Multiple Linear Regression and Factors

Adam J Sullivan
Assistant Professor of Biostatistics
Brown University

Multiple Variables


Multiple Variables


library(readr)
library(tidyverse)
bikes <- read_csv("../Notes/Data/bike_sharing.csv") %>%
        mutate(season = as.factor(season)) %>%
        mutate(weather=as.factor(weather)) 

Multiple Variables


mod.final <- lm(count~season+weather+humidity+windspeed, data=bikes)
tidy(mod.final)[-1,-c(3:4)]
glance(mod.final)

Multiple Variables


term estimate p.value
season2 115.8007186 0.0000000
season3 148.3532069 0.0000000
season4 118.4943844 0.0000000
weather2 19.9875113 0.0000001
weather3 0.1237865 0.9844830
weather4 162.2596870 0.3185115
humidity -3.4929513 0.0000000
windspeed 0.6328680 0.0020498

Multiple Variables


r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual
0.1949699 0.1943778 162.5889 329.2869 0 9 -70865.13 141750.3 141823.2 287534958 10877

Inference on Linear Regressions


Inference on Linear Regressions


  1. Overall F Test of Model
  2. Individual Coefficient Tests
  3. Testing Groups of Variables

Overall Model F test


  • We can perform an overall F Test for a model.
  • When we do this we test the following Hypothesis \[H_0:\beta_1=\beta_2=\cdots=\beta_p=0\] \[H_1=\text{ at least one }\beta_i\ne0\]

Overall Model F test: Bike Sharing


kable(glance(mod.final))

Overall Model F test: Bike Sharing


r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual
0.1949699 0.1943778 162.5889 329.2869 0 9 -70865.13 141750.3 141823.2 287534958 10877

Overall Model F test: Bike Sharing


  • We have an F Statistic of 3329.3
  • This yields a p-value of \(<0.0001\)
  • We can reject the null in favor of the alternative hypothesis.
  • This suggests that at least one \(\beta_I\) is not 0.

Individual Coefficients \(t\)-test


  • We can test each individual coefficients.
  • The hypothesis we test is that: \[H_0:\beta_i=0\] \[H_1=\beta_i\ne0\]
  • We do this with a t-test.

Individual Coefficients \(t\)-test


  • With the t-test we have that: \[ t_i=\dfrac{\beta_i}{se(\beta_i)}\]
  • Then we can test this with the \(t\)-distribution.

Individual Coefficients \(t\)-test


  • Consider out Bike model:

\[ \begin{align} E[count] &= \beta_0 + \beta_1 season(Summer) + \beta_2 season(Fall) + \\ & \beta_3 season(Winter) + \beta_4 weather(2) + \beta_5 weather(3) + \\ & \beta_6 weather(4) + \beta_7 humidity + \beta_8 windspeed\\ \end{align} \]

tidy(mod.final)

Individual Coefficients \(t\)-Test


term estimate std.error statistic p.value
(Intercept) 298.3348913 7.3616043 40.5257985 0.0000000
season2 115.8007186 4.4387984 26.0883030 0.0000000
season3 148.3532069 4.5043842 32.9352918 0.0000000
season4 118.4943844 4.5112582 26.2663719 0.0000000
weather2 19.9875113 3.7920390 5.2709140 0.0000001
weather3 0.1237865 6.3645757 0.0194493 0.9844830
weather4 162.2596870 162.6554195 0.9975670 0.3185115
humidity -3.4929513 0.0960939 -36.3493686 0.0000000
windspeed 0.6328680 0.2052323 3.0836662 0.0020498

F-test for Groups of Coefficients


  • Many times we want to be able to test the significance of groups of coefficients.
  • We can do this with an F-test as well.
  • For example we may want to test that: \[H_0:\beta_1=\beta_2=0\] \[H_1:\text{ at least 1 }\beta_i\ne0\]

Groups of Coefficients Example


  • Consider Season in our bike example.
  • Only the first coefficient is significant.
  • We may want to know if we the whole variable is worth having in the model.
  • We will use the anova() function in R.

Groups of Coefficients Example


mod1 <- lm(count~season+weather+humidity+windspeed, data=bikes)
mod2 <- lm(count~weather+humidity+windspeed, data=bikes)
anova(mod1, mod2)

Groups of Coefficients Example


## Analysis of Variance Table
## 
## Model 1: count ~ season + weather + humidity + windspeed
## Model 2: count ~ weather + humidity + windspeed
##   Res.Df       RSS Df Sum of Sq      F    Pr(>F)    
## 1  10877 287534958                                  
## 2  10880 320760441 -3 -33225483 418.96 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Groups of Coefficients Example 2


  • Consider weather in our bike example.
  • Only the first coefficient is significant.
  • We may want to know if we the whole variable is worth having in the model.
  • We will use the anova() function in R.

Groups of Coefficients Example 2


mod1 <- lm(count~season+weather+humidity+windspeed, data=bikes)
mod2 <- lm(count~season+humidity+windspeed, data=bikes)
anova(mod1, mod2)

Groups of Coefficients Example 2


## Analysis of Variance Table
## 
## Model 1: count ~ season + weather + humidity + windspeed
## Model 2: count ~ season + humidity + windspeed
##   Res.Df       RSS Df Sum of Sq      F    Pr(>F)    
## 1  10877 287534958                                  
## 2  10880 288348337 -3   -813379 10.256 9.704e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Factors


What are Factors?


  • Factors are categorical data.
  • Factors contain
    • Levels
    • Can be numerical or character data

Why do we use them?


  • Factors allow us to group things by category.
  • Factors create dummy variables or indicator variables in our regressions.

What is an indicator variable?


  • Consider the scenario where we have 3 treatments: A, B, & C
  • We could have two indicator variables:
    • I(Treat_A) is
      • 1 if patient is on treatment A
      • 0 if patient is not on treatment A
    • I(Treat_B) is
      • 1 if patient is on treatment B
      • 0 if patient is not on treatment B
    • Treatment C would be both:
      • I(Treat_A) = 0
      • I(Treat_B) = 0

What does this mean in regressions?


  • Indicator variables change the regression: \[Outcome = \beta_0 + \beta_1 Age + \beta_2 I(Treat_A) + \beta_3 I(Treat_B)\]
  • For a person on Treatment A: \[Outcome = (\beta_0 + \beta_2 ) + \beta_1 Age\]
  • For a person on Treatment B: \[Outcome = (\beta_0 + \beta_3 ) + \beta_1 Age\]
  • For a person on Treatment C: \[Outcome = \beta_0 + \beta_1 Age\]

What does this mean in Regression?


  • We can see that a factor leads to multiple different regression lines.
  • Each line then has a different intercept than the others.
  • In this regression age has the same effect, just the baseline is different.

Are there different types of factors?


  • We can have different types of factors
    • Nominal
    • Ordinal

Nominal Factors


  • Nominal factors are factors that represent named categories.
  • These are categories that do not have an intrinsic ordering.
  • Examples:
    • Gender
    • Sex
    • Race/ethnicity
  • We must treat these as indicator variables in models.

Ordinal Factors


  • Ordinal factors are factors that represent some ordered categories.
  • These factors have an intrinsic ordering.
  • Examples:
    • Likert Scales (Poor, Neutral, Good)
    • BMI (Underweight, Normal, Overweight, Obese)
    • Age Groups (under 18, 18-25, 25-35, 35+)
  • In regression models can be indicator variables or a trend.

Indicator Variables vs Trends


  • We saw with indicator variables that we have multiple variables to represent the factor.
  • Each category leads to a different regression.
  • Consider this: \[ Outcome = \beta_0 + \beta_1 age + \beta_2 I(BMI = underweight) + \beta_3 I(BMI=Overweight+)\]
  • We then have 3 different regressions:
    • 1 for normal BMI
    • 1 for underweight BMI
    • 1 for overweight+ BMI

Our 3 regressions


  • Normal BMI \[Outcome =\beta_0 + \beta_1 age\]
  • Underweight BMI \[Outcome =(\beta_0 + \beta_2) + \beta_1 age\]
  • Overweight+ BMI \[Outcome =(\beta_0+ \beta_3) + \beta_1 age\]

Indicator Variables vs Trends


  • With a trend we allow the factor to have one slope.
  • Instead of 1 category leading to a new regression, each category leads to a further increase.
  • Our model \[Outcome =\beta_0 + \beta_1 age + \beta_2 BMI\]

Our Regressions


  • Normal BMI \[Outcome =\beta_0 + \beta_1 age\]
  • Underweight BMI \[Outcome =(\beta_0 + \beta_2) + \beta_1 age\]
  • Overweight+ BMI \[Outcome =(\beta_0+ 2\beta_2) + \beta_1 age\]

What is the difference?


  • You can see that it appears that we still have 3 regressions.
  • indicator variable regression, each group can have a unique change from the baseline.
    • \(\beta_{group=2}\ne\beta_{group=3}\)
  • trend regression, each group has the same difference between them

An example: PBC Data


  • This data is from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted between 1974 and 1984.
  • A total of 424 PBC patients, referred to Mayo Clinic during that ten-year interval, met eligibility criteria for the randomized placebo controlled trial of the drug D-penicillamine.
  • The first 312 cases in the data set participated in the randomized trial and contain largely complete data.
  • The additional 112 cases did not participate in the clinical trial, but consented to have basic measurements recorded and to be followed for survival.

PBC Data


Variable Description
age in years
albumin serum albumin (g/dl)
alk.phos alkaline phosphotase (U/liter)
ascites presence of ascites
ast aspartate aminotransferase, once called SGOT (U/ml)
bili serum bilirunbin (mg/dl)

PBC Data


Variable Description
chol serum cholesterol (mg/dl)
copper urine copper (ug/day)
edema 0 no edema, 0.5 untreated or successfully treated
1 edema despite diuretic therapy
hepato presence of hepatomegaly or enlarged liver
id case number

PBC Data


Variable Description
platelet platelet count
protime standardised blood clotting time
sex m/f
spiders blood vessel malformations in the skin
stage histologic stage of disease (needs biopsy)
status status at endpoint, 0/1/2 for censored, transplant, dead

PBC Data


Variable Description
time number of days between registration and the earlier of death, transplantion, or study analysis in July, 1986
trt 1/2/NA for D-penicillmain, placebo, not randomised
trig triglycerides (mg/dl)

Data


library(survival)
pbc
##      id time status trt      age sex ascites hepato spiders edema bili
## 1     1  400      2   1 58.76523   f       1      1       1   1.0 14.5
## 2     2 4500      0   1 56.44627   f       0      1       1   0.0  1.1
## 3     3 1012      2   1 70.07255   m       0      0       0   0.5  1.4
## 4     4 1925      2   1 54.74059   f       0      1       1   0.5  1.8
## 5     5 1504      1   2 38.10541   f       0      1       1   0.0  3.4
## 6     6 2503      2   2 66.25873   f       0      1       0   0.0  0.8
## 7     7 1832      0   2 55.53457   f       0      1       0   0.0  1.0
## 8     8 2466      2   2 53.05681   f       0      0       0   0.0  0.3
## 9     9 2400      2   1 42.50787   f       0      0       1   0.0  3.2
## 10   10   51      2   2 70.55989   f       1      0       1   1.0 12.6
## 11   11 3762      2   2 53.71389   f       0      1       1   0.0  1.4
## 12   12  304      2   2 59.13758   f       0      0       1   0.0  3.6
## 13   13 3577      0   2 45.68925   f       0      0       0   0.0  0.7
## 14   14 1217      2   2 56.22177   m       1      1       0   1.0  0.8
## 15   15 3584      2   1 64.64613   f       0      0       0   0.0  0.8
## 16   16 3672      0   2 40.44353   f       0      0       0   0.0  0.7
## 17   17  769      2   2 52.18344   f       0      1       0   0.0  2.7
## 18   18  131      2   1 53.93018   f       0      1       1   1.0 11.4
## 19   19 4232      0   1 49.56057   f       0      1       0   0.5  0.7
## 20   20 1356      2   2 59.95346   f       0      1       0   0.0  5.1
## 21   21 3445      0   2 64.18891   m       0      1       1   0.0  0.6
## 22   22  673      2   1 56.27652   f       0      0       1   0.0  3.4
## 23   23  264      2   2 55.96715   f       1      1       1   1.0 17.4
## 24   24 4079      2   1 44.52019   m       0      1       0   0.0  2.1
## 25   25 4127      0   2 45.07324   f       0      0       0   0.0  0.7
## 26   26 1444      2   2 52.02464   f       0      1       1   0.0  5.2
## 27   27   77      2   2 54.43943   f       1      1       1   0.5 21.6
## 28   28  549      2   2 44.94730   f       1      1       1   1.0 17.2
## 29   29 4509      0   2 63.87680   f       0      0       0   0.0  0.7
## 30   30  321      2   2 41.38535   f       0      1       1   0.0  3.6
## 31   31 3839      2   2 41.55236   f       0      1       0   0.0  4.7
## 32   32 4523      0   2 53.99589   f       0      1       0   0.0  1.8
## 33   33 3170      2   2 51.28268   f       0      0       0   0.0  0.8
## 34   34 3933      0   1 52.06023   f       0      0       0   0.0  0.8
## 35   35 2847      2   2 48.61875   f       0      0       0   0.0  1.2
## 36   36 3611      0   2 56.41068   f       0      0       0   0.0  0.3
## 37   37  223      2   1 61.72758   f       1      1       0   1.0  7.1
## 38   38 3244      2   2 36.62697   f       0      1       1   0.0  3.3
## 39   39 2297      2   1 55.39220   f       0      1       0   0.0  0.7
## 40   40 4467      0   1 46.66940   f       0      0       0   0.0  1.3
## 41   41 1350      2   1 33.63450   f       0      1       0   0.0  6.8
## 42   42 4453      0   2 33.69473   f       0      1       1   0.0  2.1
## 43   43 4556      0   1 48.87064   f       0      0       0   0.0  1.1
## 44   44 3428      2   2 37.58248   f       0      1       1   1.0  3.3
## 45   45 4025      0   2 41.79329   f       0      0       0   0.0  0.6
## 46   46 2256      2   1 45.79877   f       0      1       0   0.0  5.7
## 47   47 2576      0   2 47.42779   f       0      0       0   0.0  0.5
## 48   48 4427      0   2 49.13621   m       0      0       0   0.0  1.9
## 49   49  708      2   2 61.15264   f       0      1       0   0.0  0.8
## 50   50 2598      2   1 53.50856   f       0      1       0   0.0  1.1
## 51   51 3853      2   2 52.08761   f       0      0       0   0.0  0.8
## 52   52 2386      2   1 50.54073   m       0      0       0   0.0  6.0
## 53   53 1000      2   1 67.40862   f       0      1       0   0.0  2.6
## 54   54 1434      2   1 39.19781   f       1      1       1   1.0  1.3
## 55   55 1360      2   1 65.76318   m       0      0       0   0.0  1.8
## 56   56 1847      2   2 33.61807   f       0      1       1   0.0  1.1
## 57   57 3282      2   1 53.57153   f       0      1       0   0.5  2.3
## 58   58 4459      0   1 44.56947   m       0      0       0   0.0  0.7
## 59   59 2224      2   1 40.39425   f       0      1       1   0.0  0.8
## 60   60 4365      0   1 58.38193   f       0      0       0   0.0  0.9
## 61   61 4256      0   2 43.89870   m       0      0       0   0.0  0.6
## 62   62 3090      2   2 60.70637   f       1      0       0   0.0  1.3
## 63   63  859      2   2 46.62834   f       0      0       1   1.0 22.5
## 64   64 1487      2   2 62.90760   f       0      1       0   0.0  2.1
## 65   65 3992      0   1 40.20260   f       0      0       0   0.0  1.2
## 66   66 4191      2   1 46.45311   m       0      1       0   0.0  1.4
## 67   67 2769      2   2 51.28816   f       0      0       0   0.0  1.1
## 68   68 4039      0   1 32.61328   f       0      0       0   0.0  0.7
## 69   69 1170      2   1 49.33881   f       0      1       1   0.5 20.0
## 70   70 3458      0   1 56.39973   f       0      0       0   0.0  0.6
## 71   71 4196      0   2 48.84600   f       0      1       0   0.0  1.2
## 72   72 4184      0   2 32.49281   f       0      0       0   0.0  0.5
## 73   73 4190      0   2 38.49418   f       0      0       0   0.0  0.7
## 74   74 1827      2   1 51.92060   f       0      1       1   0.0  8.4
## 75   75 1191      2   1 43.51814   f       1      1       1   0.5 17.1
## 76   76   71      2   1 51.94251   f       0      1       1   0.5 12.2
## 77   77  326      2   2 49.82615   f       0      1       1   0.5  6.6
## 78   78 1690      2   1 47.94524   f       0      1       0   0.0  6.3
## 79   79 3707      0   1 46.51608   f       0      1       0   0.0  0.8
## 80   80  890      2   2 67.41136   m       0      1       0   0.0  7.2
## 81   81 2540      2   1 63.26352   f       0      1       1   0.0 14.4
## 82   82 3574      2   1 67.31006   f       0      0       0   0.0  4.5
## 83   83 4050      0   1 56.01369   f       0      1       0   0.5  1.3
## 84   84 4032      0   2 55.83025   f       0      0       0   0.0  0.4
## 85   85 3358      2   2 47.21697   f       0      1       0   0.0  2.1
## 86   86 1657      2   1 52.75838   f       0      1       1   0.0  5.0
## 87   87  198      2   1 37.27858   f       0      0       0   0.0  1.1
## 88   88 2452      0   2 41.39357   f       0      0       0   0.5  0.6
## 89   89 1741      2   1 52.44353   f       0      1       0   0.0  2.0
## 90   90 2689      2   1 33.47570   m       0      0       0   0.0  1.6
## 91   91  460      2   2 45.60712   f       0      1       1   0.5  5.0
## 92   92  388      2   1 76.70910   f       1      0       0   1.0  1.4
## 93   93 3913      0   1 36.53388   f       0      0       0   0.0  1.3
## 94   94  750      2   1 53.91650   f       0      1       1   0.0  3.2
## 95   95  130      2   2 46.39014   f       1      1       1   1.0 17.4
## 96   96 3850      0   1 48.84600   f       0      0       0   0.0  1.0
## 97   97  611      2   2 71.89322   m       0      1       0   0.5  2.0
## 98   98 3823      0   1 28.88433   f       0      0       0   0.0  1.0
## 99   99 3820      0   2 48.46817   m       0      0       0   0.0  1.8
## 100 100  552      2   2 51.46886   m       0      1       0   0.0  2.3
## 101 101 3581      0   2 44.95003   f       0      0       0   0.0  0.9
## 102 102 3099      0   1 56.56947   f       0      0       0   0.0  0.9
## 103 103  110      2   2 48.96372   f       1      1       1   1.0  2.5
## 104 104 3086      2   1 43.01711   f       0      0       0   0.0  1.1
## 105 105 3092      1   2 34.03970   f       0      1       0   0.0  1.1
## 106 106 3222      2   1 68.50924   f       1      1       0   0.0  2.1
## 107 107 3388      0   2 62.52156   f       0      0       0   0.0  0.6
## 108 108 2583      2   1 50.35729   f       0      0       0   0.0  0.4
## 109 109 2504      0   2 44.06297   f       0      0       0   0.0  0.5
## 110 110 2105      2   1 38.91034   f       0      1       1   0.0  1.9
## 111 111 2350      1   1 41.15264   f       0      0       0   0.0  5.5
## 112 112 3445      2   2 55.45791   f       0      1       1   0.0  2.0
## 113 113  980      2   1 51.23340   f       0      1       1   0.0  6.7
## 114 114 3395      2   2 52.82683   m       0      0       0   0.0  3.2
## 115 115 3422      0   2 42.63929   f       0      0       1   0.0  0.7
## 116 116 3336      0   1 61.07050   f       0      0       1   0.5  3.0
## 117 117 1083      2   1 49.65640   f       0      1       1   0.0  6.5
## 118 118 2288      2   1 48.85421   f       0      1       0   0.0  3.5
## 119 119  515      2   1 54.25599   f       0      0       1   0.0  0.6
## 120 120 2033      1   1 35.15127   m       0      0       0   0.0  3.5
## 121 121  191      2   2 67.90691   m       1      1       0   1.0  1.3
## 122 122 3297      0   1 55.43600   f       0      0       0   0.0  0.6
## 123 123  971      2   1 45.82067   f       0      1       1   1.0  5.1
## 124 124 3069      0   1 52.88980   m       0      1       0   0.0  0.6
## 125 125 2468      1   2 47.18138   f       0      1       0   0.0  1.3
## 126 126  824      2   1 53.59890   f       1      1       1   0.0  1.2
## 127 127 3255      0   2 44.10404   f       0      0       0   0.0  0.5
## 128 128 1037      2   1 41.94935   f       0      1       1   0.0 16.2
## 129 129 3239      0   1 63.61396   f       0      1       0   0.0  0.9
## 130 130 1413      2   2 44.22724   f       0      1       1   0.0 17.4
## 131 131  850      2   2 62.00137   f       0      1       1   0.0  2.8
## 132 132 2944      0   1 40.55305   f       0      0       0   0.0  1.9
## 133 133 2796      2   2 62.64476   m       0      0       0   0.0  1.5
## 134 134 3149      0   2 42.33539   f       0      0       0   0.0  0.7
## 135 135 3150      0   1 42.96783   f       0      0       0   0.0  0.4
## 136 136 3098      0   1 55.96167   f       0      0       0   0.0  0.8
## 137 137 2990      0   1 62.86105   f       0      0       0   0.0  1.1
## 138 138 1297      2   1 51.24983   m       0      1       0   0.0  7.3
## 139 139 2106      0   2 46.76249   f       0      1       0   0.0  1.1
## 140 140 3059      0   1 54.07529   f       0      1       0   0.0  1.1
## 141 141 3050      0   1 47.03628   f       0      0       0   0.0  0.9
## 142 142 2419      2   2 55.72621   f       0      1       0   0.0  1.0
## 143 143  786      2   2 46.10267   f       0      1       0   0.0  2.9
## 144 144  943      2   2 52.28747   f       0      1       0   0.5 28.0
## 145 145 2976      0   2 51.20055   f       0      0       1   0.0  0.7
## 146 146 2615      0   2 33.86448   f       0      0       0   0.5  1.2
## 147 147 2995      0   1 75.01164   f       0      0       0   0.5  1.2
## 148 148 1427      2   2 30.86379   f       0      1       0   0.0  7.2
## 149 149  762      2   1 61.80424   m       0      1       1   0.5  3.0
## 150 150 2891      0   2 34.98700   f       0      0       1   0.0  1.0
## 151 151 2870      0   1 55.04175   f       0      0       0   0.0  0.9
## 152 152 1152      2   1 69.94114   m       0      1       0   0.0  2.3
## 153 153 2863      0   1 49.60438   f       0      0       0   0.0  0.5
## 154 154  140      2   1 69.37714   m       0      0       1   1.0  2.4
## 155 155 2666      0   2 43.55647   f       0      1       1   0.5  0.6
## 156 156  853      2   2 59.40862   f       0      1       0   0.0 25.5
## 157 157 2835      0   2 48.75838   f       0      0       0   0.0  0.6
## 158 158 2475      1   1 36.49281   f       0      0       0   0.0  3.4
## 159 159 1536      2   2 45.76044   m       0      0       0   0.0  2.5
## 160 160 2772      0   2 57.37166   f       0      0       0   0.0  0.6
## 161 161 2797      0   2 42.74333   f       0      0       0   0.0  2.3
## 162 162  186      2   2 58.81725   f       0      1       1   0.0  3.2
## 163 163 2055      2   1 53.49760   f       0      0       0   0.0  0.3
## 164 164  264      2   2 43.41410   f       0      1       1   0.5  8.5
## 165 165 1077      2   1 53.30595   m       0      1       0   0.0  4.0
## 166 166 2721      0   2 41.35524   f       0      1       0   0.0  5.7
## 167 167 1682      2   1 60.95825   m       0      1       0   0.0  0.9
## 168 168 2713      0   2 47.75359   f       0      1       0   0.0  0.4
## 169 169 1212      2   2 35.49076   f       0      0       0   0.0  1.3
## 170 170 2692      0   1 48.66256   f       0      0       0   0.0  1.2
## 171 171 2574      0   1 52.66804   f       0      0       0   0.0  0.5
## 172 172 2301      0   2 49.86995   f       0      0       1   0.0  1.3
## 173 173 2657      0   1 30.27515   f       0      1       1   0.0  3.0
## 174 174 2644      0   1 55.56742   f       0      0       0   0.0  0.5
## 175 175 2624      0   2 52.15332   f       0      0       0   0.0  0.8
## 176 176 1492      2   1 41.60986   f       0      1       1   0.0  3.2
## 177 177 2609      0   2 55.45243   f       0      0       0   0.0  0.9
## 178 178 2580      0   1 70.00411   f       0      0       0   0.0  0.6
## 179 179 2573      0   2 43.94251   f       0      1       0   0.0  1.8
## 180 180 2563      0   2 42.56810   f       0      0       0   0.0  4.7
## 181 181 2556      0   1 44.56947   f       0      1       1   0.0  1.4
## 182 182 2555      0   1 56.94456   f       0      1       0   0.0  0.6
## 183 183 2241      1   2 40.26010   f       0      0       0   0.0  0.5
## 184 184  974      2   2 37.60712   f       0      1       0   0.0 11.0
## 185 185 2527      0   1 48.36140   f       0      0       0   0.0  0.8
## 186 186 1576      2   1 70.83641   f       0      0       1   0.5  2.0
## 187 187  733      2   2 35.79192   f       0      1       0   0.0 14.0
## 188 188 2332      0   1 62.62286   f       0      1       0   0.0  0.7
## 189 189 2456      0   2 50.64750   f       0      1       0   0.0  1.3
## 190 190 2504      0   1 54.52704   f       0      0       1   0.0  2.3
## 191 191  216      2   2 52.69268   f       1      1       1   0.0 24.5
## 192 192 2443      0   1 52.72005   f       0      1       0   0.0  0.9
## 193 193  797      2   2 56.77207   f       0      0       0   0.0 10.8
## 194 194 2449      0   1 44.39699   f       0      0       0   0.0  1.5
## 195 195 2330      0   1 29.55510   f       0      1       0   0.0  3.7
## 196 196 2363      0   1 57.04038   f       0      1       1   0.0  1.4
## 197 197 2365      0   1 44.62697   f       0      0       0   0.0  0.6
## 198 198 2357      0   2 35.79740   f       0      0       1   0.0  0.7
## 199 199 1592      0   1 40.71732   f       0      0       0   0.0  2.1
## 200 200 2318      0   2 32.23272   f       0      0       1   0.0  4.7
## 201 201 2294      0   2 41.09240   f       0      1       0   0.0  0.6
## 202 202 2272      0   1 61.63997   f       0      0       0   0.0  0.5
## 203 203 2221      0   2 37.05681   f       0      1       0   0.0  0.5
## 204 204 2090      2   2 62.57906   f       0      0       0   0.0  0.7
## 205 205 2081      2   1 48.97741   f       1      0       0   0.0  2.5
## 206 206 2255      0   1 61.99042   f       0      0       0   0.0  0.6
## 207 207 2171      0   1 72.77207   f       0      0       0   0.5  0.6
## 208 208  904      2   1 61.29500   f       0      1       0   0.0  3.9
## 209 209 2216      0   2 52.62423   f       0      1       1   0.0  0.7
## 210 210 2224      0   2 49.76318   m       0      1       0   0.0  0.9
## 211 211 2195      0   2 52.91444   f       0      0       0   0.0  1.3
## 212 212 2176      0   2 47.26352   f       0      0       0   0.0  1.2
## 213 213 2178      0   1 50.20397   f       0      0       1   0.0  0.5
## 214 214 1786      2   2 69.34702   f       0      1       0   0.0  0.9
## 215 215 1080      2   2 41.16906   f       0      0       0   0.0  5.9
## 216 216 2168      0   1 59.16496   f       0      0       0   0.0  0.5
## 217 217  790      2   2 36.07940   f       0      1       0   0.0 11.4
## 218 218 2170      0   1 34.59548   f       0      0       0   0.0  0.5
## 219 219 2157      0   2 42.71321   f       0      0       0   0.0  1.6
## 220 220 1235      2   1 63.63039   f       0      0       1   0.0  3.8
## 221 221 2050      0   2 56.62971   f       0      1       0   0.0  0.9
## 222 222  597      2   2 46.26420   f       0      1       0   0.0  4.5
## 223 223  334      2   1 61.24298   f       1      1       0   1.0 14.1
## 224 224 1945      0   1 38.62012   f       0      0       0   0.0  1.0
## 225 225 2022      0   1 38.77070   f       0      0       0   0.0  0.7
## 226 226 1978      0   2 56.69541   f       0      1       0   0.0  0.5
## 227 227  999      2   1 58.95140   m       0      0       0   0.0  2.3
## 228 228 1967      0   2 36.92266   f       0      0       0   0.0  0.7
## 229 229  348      2   1 62.41478   f       1      1       0   0.5  4.5
## 230 230 1979      0   2 34.60917   f       0      1       1   0.0  3.3
## 231 231 1165      2   2 58.33539   f       0      1       1   0.0  3.4
## 232 232 1951      0   1 50.18207   f       0      1       0   0.0  0.4
## 233 233 1932      0   1 42.68583   f       0      1       1   0.0  0.9
## 234 234 1776      0   2 34.37919   f       0      0       0   0.0  0.9
## 235 235 1882      0   2 33.18275   f       0      1       0   0.0 13.0
## 236 236 1908      0   1 38.38193   f       0      1       1   0.0  1.5
## 237 237 1882      0   1 59.76181   f       0      1       0   0.0  1.6
## 238 238 1874      0   2 66.41205   f       0      0       0   0.5  0.6
## 239 239  694      2   1 46.78987   f       0      1       1   0.0  0.8
## 240 240 1831      0   1 56.07940   f       0      0       0   0.0  0.4
## 241 241  837      1   2 41.37440   f       0      1       1   0.0  4.4
## 242 242 1810      0   1 64.57221   f       0      1       0   0.0  1.9
## 243 243  930      2   2 67.48802   f       0      1       0   0.0  8.0
## 244 244 1690      2   1 44.82957   f       0      0       1   0.0  3.9
## 245 245 1790      0   2 45.77139   f       0      1       0   0.0  0.6
## 246 246 1435      1   1 32.95003   f       0      1       0   0.0  2.1
## 247 247  732      1   1 41.22108   f       0      1       0   0.0  6.1
## 248 248 1785      0   2 55.41684   f       0      1       0   0.0  0.8
## 249 249 1783      0   1 47.98084   f       0      0       1   0.0  1.3
## 250 250 1769      0   2 40.79124   f       0      1       0   0.0  0.6
## 251 251 1457      0   1 56.97467   f       0      0       0   0.0  0.5
## 252 252 1770      0   1 68.46270   f       0      1       1   0.0  1.1
## 253 253 1765      0   1 78.43943   m       1      1       1   0.0  7.1
## 254 254  737      1   1 39.85763   f       0      1       1   0.0  3.1
## 255 255 1735      0   2 35.31006   f       0      1       1   0.0  0.7
## 256 256 1701      0   1 31.44422   f       0      0       0   0.0  1.1
## 257 257 1614      0   1 58.26420   f       0      0       0   0.0  0.5
## 258 258 1702      0   1 51.48802   f       0      0       0   0.0  1.1
## 259 259 1615      0   2 59.96988   f       0      1       0   0.0  3.1
## 260 260 1656      0   2 74.52430   m       0      1       0   0.0  5.6
## 261 261 1677      0   2 52.36413   f       0      1       1   0.0  3.2
## 262 262 1666      0   2 42.78713   f       0      1       0   0.0  2.8
## 263 263 1301      1   2 34.87474   f       0      1       1   0.5  1.1
## 264 264 1542      1   2 44.13963   f       0      1       1   0.0  3.4
## 265 265 1084      1   2 46.38193   f       0      1       0   0.0  3.5
## 266 266 1614      0   1 56.30938   f       0      0       0   0.0  0.5
## 267 267  179      2   1 70.90760   f       1      1       1   1.0  6.6
## 268 268 1191      2   1 55.39493   f       1      1       0   0.5  6.4
## 269 269 1363      0   2 45.08419   f       0      0       0   0.0  3.6
## 270 270 1568      0   1 26.27789   f       0      1       1   0.0  1.0
## 271 271 1569      0   2 50.47228   f       0      1       0   0.0  1.0
## 272 272 1525      0   1 38.39836   f       0      0       0   0.0  0.5
## 273 273 1558      0   2 47.41958   f       0      0       1   0.0  2.2
## 274 274 1447      1   1 47.98084   f       0      0       0   0.0  1.6
## 275 275 1349      0   1 38.31622   f       0      0       0   0.0  2.2
## 276 276 1481      0   1 50.10815   f       0      0       0   0.0  1.0
## 277 277 1434      0   2 35.08830   f       0      0       0   0.5  1.0
## 278 278 1420      0   2 32.50376   f       0      0       0   0.0  5.6
## 279 279 1433      0   2 56.15332   f       0      0       0   0.0  0.5
## 280 280 1412      0   1 46.15469   f       0      0       0   0.0  1.6
## 281 281   41      2   1 65.88364   f       1      0       0   1.0 17.9
## 282 282 1455      0   2 33.94387   f       0      1       0   0.0  1.3
## 283 283 1030      0   2 62.86105   f       0      0       0   0.0  1.1
## 284 284 1418      0   2 48.56400   f       0      0       0   0.0  1.3
## 285 285 1401      0   1 46.34908   f       0      0       0   0.0  0.8
## 286 286 1408      0   1 38.85284   f       0      1       1   0.0  2.0
## 287 287 1234      0   1 58.64750   f       0      0       1   0.0  6.4
## 288 288 1067      1   2 48.93634   f       0      1       0   0.5  8.7
## 289 289  799      2   1 67.57290   m       0      1       0   0.5  4.0
## 290 290 1363      0   1 65.98494   f       0      0       0   0.0  1.4
## 291 291  901      1   1 40.90075   f       0      0       0   0.0  3.2
## 292 292 1329      0   2 50.24504   m       0      1       0   0.0  8.6
## 293 293 1320      0   2 57.19644   f       0      1       1   1.0  8.5
## 294 294 1302      0   1 60.53662   m       0      1       0   0.0  6.6
## 295 295  877      1   1 35.35113   m       0      0       0   0.0  2.4
## 296 296 1321      0   2 31.38125   f       0      0       0   0.0  0.8
## 297 297  533      1   1 55.98631   m       0      1       0   0.0  1.2
## 298 298 1300      0   2 52.72553   f       0      1       0   0.0  1.1
## 299 299 1293      0   1 38.09172   f       0      0       0   0.0  2.4
## 300 300  207      2   2 58.17112   f       0      1       0   0.0  5.2
## 301 301 1295      0   2 45.21013   f       0      0       0   0.0  1.0
## 302 302 1271      0   1 37.79877   f       0      0       0   0.0  0.7
## 303 303 1250      0   2 60.65982   f       0      1       1   0.0  1.0
## 304 304 1230      0   1 35.53457   f       0      0       0   0.0  0.5
## 305 305 1216      0   2 43.06639   f       0      1       1   0.0  2.9
## 306 306 1216      0   2 56.39151   f       0      1       0   0.0  0.6
## 307 307 1149      0   2 30.57358   f       0      0       0   0.0  0.8
## 308 308 1153      0   1 61.18275   f       0      1       0   0.0  0.4
## 309 309  994      0   2 58.29979   f       0      0       0   0.0  0.4
## 310 310  939      0   1 62.33265   f       0      0       0   0.0  1.7
## 311 311  839      0   1 37.99863   f       0      0       0   0.0  2.0
## 312 312  788      0   2 33.15264   f       0      0       1   0.0  6.4
## 313 313 4062      0  NA 60.00000   f      NA     NA      NA   0.0  0.7
## 314 314 3561      2  NA 64.99932   f      NA     NA      NA   0.5  1.4
## 315 315 2844      0  NA 54.00137   f      NA     NA      NA   0.0  0.7
## 316 316 2071      2  NA 75.00068   f      NA     NA      NA   0.5  0.7
## 317 317 3030      0  NA 62.00137   f      NA     NA      NA   0.0  0.8
## 318 318 1680      0  NA 43.00068   f      NA     NA      NA   0.0  0.7
## 319 319   41      2  NA 46.00137   f      NA     NA      NA   0.0  5.0
## 320 320 2403      0  NA 44.00000   f      NA     NA      NA   0.5  0.4
## 321 321 1170      0  NA 60.99932   m      NA     NA      NA   0.5  1.3
## 322 322 2011      2  NA 64.00000   f      NA     NA      NA   0.0  1.1
## 323 323 3523      0  NA 40.00000   f      NA     NA      NA   0.0  0.6
## 324 324 3468      0  NA 63.00068   f      NA     NA      NA   0.0  0.6
## 325 325 4795      0  NA 34.00137   f      NA     NA      NA   0.0  1.8
## 326 326 1236      0  NA 52.00000   f      NA     NA      NA   0.0  1.5
## 327 327 4214      0  NA 48.99932   f      NA     NA      NA   0.0  1.2
## 328 328 2111      2  NA 54.00137   f      NA     NA      NA   0.0  1.0
## 329 329 1462      2  NA 63.00068   f      NA     NA      NA   0.0  0.7
## 330 330 1746      2  NA 54.00137   m      NA     NA      NA   0.0  3.5
## 331 331   94      2  NA 46.00137   f      NA     NA      NA   0.5  3.1
## 332 332  785      2  NA 52.99932   f      NA     NA      NA   0.0 12.6
## 333 333 1518      2  NA 56.00000   f      NA     NA      NA   0.0  2.8
## 334 334  466      2  NA 56.00000   f      NA     NA      NA   0.0  7.1
## 335 335 3527      0  NA 55.00068   f      NA     NA      NA   0.0  0.6
## 336 336 2635      0  NA 64.99932   f      NA     NA      NA   0.0  2.1
## 337 337 2286      2  NA 56.00000   f      NA     NA      NA   0.0  1.8
## 338 338  791      2  NA 47.00068   f      NA     NA      NA   0.0 16.0
## 339 339 3492      0  NA 60.00000   f      NA     NA      NA   0.0  0.6
## 340 340 3495      0  NA 52.99932   f      NA     NA      NA   0.0  5.4
## 341 341  111      2  NA 54.00137   f      NA     NA      NA   0.0  9.0
## 342 342 3231      0  NA 50.00137   f      NA     NA      NA   0.0  0.9
## 343 343  625      2  NA 48.00000   f      NA     NA      NA   0.0 11.1
## 344 344 3157      0  NA 36.00000   f      NA     NA      NA   0.0  8.9
## 345 345 3021      1  NA 48.00000   f      NA     NA      NA   0.0  0.5
## 346 346  559      2  NA 70.00137   f      NA     NA      NA   0.5  0.6
## 347 347 2812      2  NA 51.00068   f      NA     NA      NA   0.0  3.4
## 348 348 2834      0  NA 52.00000   m      NA     NA      NA   0.0  0.9
## 349 349 2855      0  NA 54.00137   f      NA     NA      NA   0.0  1.4
## 350 350  662      2  NA 48.00000   f      NA     NA      NA   0.0  2.1
## 351 351  727      2  NA 66.00137   f      NA     NA      NA   0.0 15.0
## 352 352 2716      0  NA 52.99932   f      NA     NA      NA   0.0  0.6
## 353 353 2698      0  NA 62.00137   f      NA     NA      NA   0.0  1.3
## 354 354  990      2  NA 59.00068   f      NA     NA      NA   0.0  1.3
## 355 355 2338      0  NA 39.00068   f      NA     NA      NA   0.0  1.6
## 356 356 1616      2  NA 67.00068   f      NA     NA      NA   0.5  2.2
## 357 357 2563      0  NA 58.00137   f      NA     NA      NA   0.0  3.0
## 358 358 2537      0  NA 64.00000   f      NA     NA      NA   0.0  0.8
## 359 359 2534      0  NA 46.00137   f      NA     NA      NA   0.0  0.8
## 360 360  778      2  NA 64.00000   f      NA     NA      NA   0.0  1.8
## 361 361  617      1  NA 40.99932   f      NA     NA      NA   0.0  5.5
## 362 362 2267      1  NA 48.99932   f      NA     NA      NA   0.0 18.0
## 363 363 2249      0  NA 44.00000   f      NA     NA      NA   0.0  0.6
## 364 364  359      2  NA 59.00068   f      NA     NA      NA   0.0  2.7
## 365 365 1925      0  NA 63.00068   f      NA     NA      NA   0.0  0.9
## 366 366  249      2  NA 60.99932   f      NA     NA      NA   0.0  1.3
## 367 367 2202      0  NA 64.00000   f      NA     NA      NA   0.0  1.1
## 368 368   43      2  NA 48.99932   f      NA     NA      NA   0.0 13.8
## 369 369 1197      2  NA 42.00137   f      NA     NA      NA   0.0  4.4
## 370 370 1095      2  NA 50.00137   f      NA     NA      NA   0.0 16.0
## 371 371  489      2  NA 51.00068   f      NA     NA      NA   0.5  7.3
## 372 372 2149      0  NA 36.99932   f      NA     NA      NA   0.0  0.6
## 373 373 2103      0  NA 62.00137   f      NA     NA      NA   0.0  0.7
## 374 374 1980      0  NA 51.00068   f      NA     NA      NA   0.0  0.7
## 375 375 1347      1  NA 52.00000   f      NA     NA      NA   0.0  1.7
## 376 376 1478      2  NA 44.00000   m      NA     NA      NA   0.0  9.5
## 377 377 1987      0  NA 32.99932   f      NA     NA      NA   0.0  2.2
## 378 378 1168      2  NA 60.00000   f      NA     NA      NA   0.5  1.8
## 379 379  597      2  NA 63.00068   f      NA     NA      NA   0.5  3.3
## 380 380 1725      1  NA 32.99932   f      NA     NA      NA   0.0  2.9
## 381 381 1899      0  NA 40.99932   m      NA     NA      NA   0.0  1.7
## 382 382  221      2  NA 51.00068   f      NA     NA      NA   0.0 14.0
## 383 383 1022      1  NA 36.99932   f      NA     NA      NA   0.5  0.8
## 384 384 1639      0  NA 59.00068   f      NA     NA      NA   0.0  1.3
## 385 385 1635      0  NA 55.00068   f      NA     NA      NA   0.0  0.7
## 386 386 1654      0  NA 54.00137   m      NA     NA      NA   0.0  1.7
## 387 387 1653      0  NA 48.99932   f      NA     NA      NA   0.5 13.6
## 388 388 1560      0  NA 40.00000   f      NA     NA      NA   0.0  0.9
## 389 389 1581      0  NA 67.00068   f      NA     NA      NA   0.0  0.7
## 390 390 1419      0  NA 68.00000   m      NA     NA      NA   0.0  3.0
## 391 391 1443      0  NA 40.99932   f      NA     NA      NA   0.0  1.2
## 392 392 1368      0  NA 68.99932   f      NA     NA      NA   0.0  0.4
## 393 393  193      2  NA 52.00000   f      NA     NA      NA   0.5  0.7
## 394 394 1367      0  NA 56.99932   f      NA     NA      NA   0.5  2.0
## 395 395 1329      0  NA 36.00000   f      NA     NA      NA   0.0  1.4
## 396 396 1343      0  NA 50.00137   f      NA     NA      NA   0.0  1.6
## 397 397 1328      0  NA 64.00000   f      NA     NA      NA   0.0  0.5
## 398 398 1375      0  NA 62.00137   f      NA     NA      NA   0.0  7.3
## 399 399 1260      0  NA 42.00137   f      NA     NA      NA   0.0  8.1
## 400 400 1223      0  NA 44.00000   f      NA     NA      NA   0.0  0.5
## 401 401  935      2  NA 68.99932   f      NA     NA      NA   0.0  4.2
## 402 402  943      0  NA 52.00000   f      NA     NA      NA   0.0  0.8
## 403 403 1141      0  NA 66.00137   f      NA     NA      NA   0.0  2.5
## 404 404 1092      0  NA 40.00000   f      NA     NA      NA   0.0  4.6
## 405 405 1150      0  NA 52.00000   f      NA     NA      NA   0.0  1.0
## 406 406  703      2  NA 46.00137   f      NA     NA      NA   0.0  4.5
## 407 407 1129      0  NA 54.00137   m      NA     NA      NA   0.0  1.1
## 408 408 1086      0  NA 51.00068   f      NA     NA      NA   0.5  1.9
## 409 409 1067      0  NA 43.00068   f      NA     NA      NA   0.0  0.7
## 410 410 1072      0  NA 39.00068   f      NA     NA      NA   0.0  1.5
## 411 411 1119      0  NA 51.00068   f      NA     NA      NA   0.0  0.6
## 412 412 1097      0  NA 67.00068   f      NA     NA      NA   0.0  1.0
## 413 413  989      0  NA 35.00068   f      NA     NA      NA   0.0  0.7
## 414 414  681      2  NA 67.00068   f      NA     NA      NA   0.0  1.2
## 415 415 1103      0  NA 39.00068   f      NA     NA      NA   0.0  0.9
## 416 416 1055      0  NA 56.99932   f      NA     NA      NA   0.0  1.6
## 417 417  691      0  NA 58.00137   f      NA     NA      NA   0.0  0.8
## 418 418  976      0  NA 52.99932   f      NA     NA      NA   0.0  0.7
##     chol albumin copper alk.phos    ast trig platelet protime stage
## 1    261    2.60    156   1718.0 137.95  172      190    12.2     4
## 2    302    4.14     54   7394.8 113.52   88      221    10.6     3
## 3    176    3.48    210    516.0  96.10   55      151    12.0     4
## 4    244    2.54     64   6121.8  60.63   92      183    10.3     4
## 5    279    3.53    143    671.0 113.15   72      136    10.9     3
## 6    248    3.98     50    944.0  93.00   63       NA    11.0     3
## 7    322    4.09     52    824.0  60.45  213      204     9.7     3
## 8    280    4.00     52   4651.2  28.38  189      373    11.0     3
## 9    562    3.08     79   2276.0 144.15   88      251    11.0     2
## 10   200    2.74    140    918.0 147.25  143      302    11.5     4
## 11   259    4.16     46   1104.0  79.05   79      258    12.0     4
## 12   236    3.52     94    591.0  82.15   95       71    13.6     4
## 13   281    3.85     40   1181.0  88.35  130      244    10.6     3
## 14    NA    2.27     43    728.0  71.00   NA      156    11.0     4
## 15   231    3.87    173   9009.8 127.71   96      295    11.0     3
## 16   204    3.66     28    685.0  72.85   58      198    10.8     3
## 17   274    3.15    159   1533.0 117.80  128      224    10.5     4
## 18   178    2.80    588    961.0 280.55  200      283    12.4     4
## 19   235    3.56     39   1881.0  93.00  123      209    11.0     3
## 20   374    3.51    140   1919.0 122.45  135      322    13.0     4
## 21   252    3.83     41    843.0  65.10   83      336    11.4     4
## 22   271    3.63    464   1376.0 120.90   55      173    11.6     4
## 23   395    2.94    558   6064.8 227.04  191      214    11.7     4
## 24   456    4.00    124   5719.0 221.88  230       70     9.9     2
## 25   298    4.10     40    661.0 106.95   66      324    11.3     2
## 26  1128    3.68     53   3228.0 165.85  166      421     9.9     3
## 27   175    3.31    221   3697.4 101.91  168       80    12.0     4
## 28   222    3.23    209   1975.0 189.10  195      144    13.0     4
## 29   370    3.78     24   5833.0  73.53   86      390    10.6     2
## 30   260    2.54    172   7277.0 121.26  158      124    11.0     4
## 31   296    3.44    114   9933.2 206.40  101      195    10.3     2
## 32   262    3.34    101   7277.0  82.56  158      286    10.6     4
## 33   210    3.19     82   1592.0 218.55  113      180    12.0     3
## 34   364    3.70     37   1840.0 170.50   64      273    10.5     2
## 35   314    3.20    201  12258.8  72.24  151      431    10.6     3
## 36   172    3.39     18    558.0  71.30   96      311    10.6     2
## 37   334    3.01    150   6931.2 180.60  118      102    12.0     4
## 38   383    3.53    102   1234.0 137.95   87      234    11.0     4
## 39   282    3.00     52   9066.8  72.24  111      563    10.6     4
## 40    NA    3.34    105  11046.6 104.49   NA      358    11.0     4
## 41    NA    3.26     96   1215.0 151.90   NA      226    11.7     4
## 42    NA    3.54    122   8778.0  56.76   NA      344    11.0     4
## 43   361    3.64     36   5430.2  67.08   89      203    10.6     2
## 44   299    3.55    131   1029.0 119.35   50      199    11.7     3
## 45    NA    3.93     19   1826.0  71.30   NA      474    10.9     2
## 46   482    2.84    161  11552.0 136.74  165      518    12.7     3
## 47   316    3.65     68   1716.0 187.55   71      356     9.8     3
## 48   259    3.70    281  10396.8 188.34  178      214    11.0     3
## 49    NA    3.82     58    678.0  97.65   NA      233    11.0     4
## 50   257    3.36     43   1080.0 106.95   73      128    10.6     4
## 51   276    3.60     54   4332.0  99.33  143      273    10.6     2
## 52   614    3.70    158   5084.4 206.40   93      362    10.6     1
## 53    NA    3.10     94   6456.2  56.76   NA      214    11.0     4
## 54   288    3.40    262   5487.2  73.53  125      254    11.0     4
## 55   416    3.94    121  10165.0  79.98  219      213    11.0     3
## 56   498    3.80     88  13862.4  95.46  319      365    10.6     2
## 57   260    3.18    231  11320.2 105.78   94      216    12.4     3
## 58   242    4.08     73   5890.0  56.76  118       NA    10.6     1
## 59   329    3.50     49   7622.8 126.42  124      321    10.6     3
## 60   604    3.40     82    876.0  71.30   58      228    10.3     3
## 61   216    3.94     28    601.0  60.45  188      211    13.0     1
## 62   302    2.75     58   1523.0  43.40  112      329    13.2     4
## 63   932    3.12     95   5396.0 244.90  133      165    11.6     3
## 64   373    3.50     52   1009.0 150.35  188      178    11.0     3
## 65   256    3.60     74    724.0 141.05  108      430    10.0     1
## 66   427    3.70    105   1909.0 182.90  171      123    11.0     3
## 67   466    3.91     84   1787.0 328.60  185      261    10.0     3
## 68   174    4.09     58    642.0  71.30   46      203    10.6     3
## 69   652    3.46    159   3292.0 215.45  184      227    12.4     3
## 70    NA    4.64     20    666.0  54.25   NA      265    10.6     2
## 71   258    3.57     79   2201.0 120.90   76      410    11.5     4
## 72   320    3.54     51   1243.0 122.45   80      225    10.0     3
## 73   132    3.60     17    423.0  49.60   56      265    11.0     1
## 74   558    3.99    280    967.0  89.90  309      278    11.0     4
## 75   674    2.53    207   2078.0 182.90  598      268    11.5     4
## 76   394    3.08    111   2132.0 155.00  243      165    11.6     4
## 77   244    3.41    199   1819.0 170.50   91      132    12.1     3
## 78   436    3.02     75   2176.0 170.50  104      236    10.6     4
## 79   315    4.24     13   1637.0 170.50   70      426    10.9     3
## 80   247    3.72    269   1303.0 176.70   91      360    11.2     4
## 81   448    3.65     34   1218.0  60.45  318      385    11.7     4
## 82   472    4.09    154   1580.0 117.80  272      412    11.1     3
## 83   250    3.50     48   1138.0  71.30  100       81    12.9     4
## 84   263    3.76     29   1345.0 137.95   74      181    11.2     3
## 85   262    3.48     58   2045.0  89.90   84      225    11.5     4
## 86  1600    3.21     75   2656.0  82.15  174      181    10.9     3
## 87   345    4.40     75   1860.0 218.55   72      447    10.7     3
## 88   296    4.06     37   1032.0  80.60   83      442    12.0     3
## 89   408    3.65     50   1083.0 110.05   98      200    11.4     2
## 90   660    4.22     94   1857.0 151.90  155      337    11.0     2
## 91   325    3.47    110   2460.0 246.45   56      430    11.9     4
## 92   206    3.13     36   1626.0  86.80   70      145    12.2     4
## 93   353    3.67     73   2039.0 232.50   68      380    11.1     2
## 94   201    3.11    178   1212.0 159.65   69      188    11.8     4
## 95    NA    2.64    182    559.0 119.35   NA      401    11.7     2
## 96    NA    3.70     33   1258.0  99.20   NA      338    10.4     3
## 97   420    3.26     62   3196.0  77.50   91      344    11.4     3
## 98   239    3.77     77   1877.0  97.65  101      312    10.2     1
## 99   460    3.35    148   1472.0 108.50  118      172    10.2     2
## 100  178    3.00    145    746.0 178.25  122      119    12.0     4
## 101  400    3.60     31   1689.0 164.30  166      327    10.4     3
## 102  248    3.97    172    646.0  62.00   84      128    10.1     1
## 103  188    3.67     57   1273.0 119.35  102      110    11.1     4
## 104  303    3.64     20   2108.0 128.65   53      349    11.1     2
## 105  464    4.20     38   1644.0 151.90  102      348    10.3     3
## 106   NA    3.90     50   1087.0 103.85   NA      137    10.6     2
## 107  212    4.03     10    648.0  71.30   77      316    17.1     1
## 108  127    3.50     14   1062.0  49.60   84      334    10.3     2
## 109  120    3.61     53    804.0 110.05   52      271    10.6     3
## 110  486    3.54     74   1052.0 108.50  109      141    10.9     3
## 111  528    4.18     77   2404.0 172.05   78      467    10.7     3
## 112  267    3.67     89    754.0 196.85   90      136    11.8     4
## 113  374    3.74    103    979.0 128.65  100      266    11.1     4
## 114  259    4.30    208   1040.0 110.05   78      268    11.7     3
## 115  303    4.19     81   1584.0 111.60  156      307    10.3     3
## 116  458    3.63     74   1588.0 106.95  382      438     9.9     3
## 117  950    3.11    111   2374.0 170.50  149      354    11.0     4
## 118  390    3.30     67    878.0 137.95   93      207    10.2     3
## 119  636    3.83    129    944.0  97.65  114      306     9.5     3
## 120  325    3.98    444    766.0 130.20  210      344    10.6     3
## 121  151    3.08     73   1112.0  46.50   49      213    13.2     4
## 122  298    4.13     29    758.0  65.10   85      256    10.7     3
## 123   NA    3.23     18    790.0 179.80   NA      104    13.0     4
## 124  251    3.90     25    681.0  57.35  107      182    10.8     4
## 125  316    3.51     75   1162.0 147.25  137      238    10.0     4
## 126  269    3.12     NA   1441.0 165.85   68      166    11.1     4
## 127  268    4.08      9   1174.0  86.80   95      453    10.0     2
## 128   NA    2.89     42   1828.0 299.15   NA      123    12.6     4
## 129  420    3.87     30   1009.0  57.35  232       NA     9.7     3
## 130 1775    3.43    205   2065.0 165.85   97      418    11.5     3
## 131  242    3.80     74    614.0 136.40  104      121    13.2     4
## 132  448    3.83     60   1052.0 127.10  175      181     9.8     3
## 133  331    3.95     13    577.0 128.65   99      165    10.1     4
## 134  578    3.67     35   1353.0 127.10  105      427    10.7     2
## 135  263    3.57    123    836.0  74.40  121      445    11.0     2
## 136  263    3.35     27   1636.0 116.25   69      206     9.8     2
## 137  399    3.60     79   3472.0 155.00  152      344    10.1     2
## 138  426    3.93    262   2424.0 145.70  218      252    10.5     3
## 139  328    3.31    159   1260.0  94.55  134      142    11.6     4
## 140  290    4.09     38   2120.0 186.00  146      318    10.0     3
## 141  346    3.77     59    794.0 125.55   56      336    10.6     2
## 142  364    3.48     20    720.0 134.85   88      283     9.9     2
## 143  332    3.60     86   1492.0 134.85  103      277    11.0     4
## 144  556    3.26    152   3896.0 198.40  171      335    10.0     3
## 145  309    3.84     96    858.0  41.85  106      253    11.4     3
## 146   NA    3.89     58   1284.0 173.60   NA      239     9.4     3
## 147  288    3.37     32    791.0  57.35  114      213    10.7     2
## 148 1015    3.26    247   3836.0 198.40  280      330     9.8     3
## 149  257    3.79    290   1664.0 102.30  112      140     9.9     4
## 150   NA    3.63     57   1536.0 134.85   NA      233    10.0     1
## 151  460    3.03     57    721.0  85.25  174      301     9.4     2
## 152  586    3.01    243   2276.0 114.70  126      339    10.9     3
## 153  217    3.85     68    453.0  54.25   68      270    11.1     1
## 154  168    2.56    225   1056.0 120.90   75      108    14.1     3
## 155  220    3.35     57   1620.0 153.45   80      311    11.2     4
## 156  358    3.52    219   2468.0 201.50  205      151    11.5     2
## 157  286    3.42     34   1868.0  77.50  206      487    10.0     2
## 158  450    3.37     32   1408.0 116.25  118      313    11.2     2
## 159  317    3.46    217    714.0 130.20  140      207    10.1     3
## 160  217    3.62     13    414.0  75.95  119      224    10.5     3
## 161  502    3.56      4    964.0 120.90  180      269     9.6     2
## 162  260    3.19     91    815.0 127.10  101      160    12.0     4
## 163  233    4.08     20    622.0  66.65   68      358     9.9     3
## 164   NA    3.34    161   1428.0 181.35   NA       88    13.3     4
## 165  196    3.45     80   2496.0 133.30  142      212    11.3     4
## 166 1480    3.26     84   1960.0 457.25  108      213     9.5     2
## 167  376    3.86    200   1015.0  83.70  154      238    10.3     4
## 168  257    3.80     44    842.0  97.65  110       NA     9.2     2
## 169  408    4.22     67   1387.0 142.60  137      295    10.1     3
## 170  390    3.61     32   1509.0  88.35   52      263     9.0     3
## 171   NA    4.52     31    784.0  74.40   NA      361    10.1     3
## 172  205    3.34     65   1031.0  91.45  126      217     9.8     3
## 173  236    3.42     76   1403.0  89.90   86      493     9.8     2
## 174   NA    3.85     63    663.0  79.05   NA      311     9.7     1
## 175  283    3.80    152    718.0 108.50  168      340    10.1     3
## 176   NA    3.56     77   1790.0 139.50   NA      149    10.1     4
## 177  258    4.01     49    559.0  43.40  133      277    10.4     2
## 178   NA    4.08     51    665.0  74.40   NA      325    10.2     4
## 179  396    3.83     39   2148.0 102.30  133      278     9.9     4
## 180  478    4.38     44   1629.0 237.15   76      175    10.4     3
## 181  248    3.58     63    554.0  75.95  106       79    10.3     4
## 182   NA    3.69    161    674.0  26.35   NA      539     9.9     2
## 183  201    3.73     44   1345.0  54.25  145      445    10.1     2
## 184  674    3.55    358   2412.0 167.40  140      471     9.8     3
## 185  256    3.54     42   1132.0  74.40   94      192    10.5     3
## 186  225    3.53     51    933.0  69.75   62      200    12.7     3
## 187  808    3.43    251   2870.0 153.45  137      268    11.5     3
## 188  187    3.48     41    654.0 120.90   98      164    11.0     4
## 189  360    3.63     52   1812.0  97.65  164      256     9.9     3
## 190   NA    3.93     24   1828.0 133.30   NA      327    10.2     2
## 191 1092    3.35    233   3740.0 147.25  432      399    15.2     4
## 192  308    3.69     67    696.0  51.15  101      344     9.8     4
## 193  932    3.19    267   2184.0 161.20  157      382    10.4     4
## 194  293    4.30     50    975.0 125.55   56      336     9.1     2
## 195  347    3.90     76   2544.0 221.65   90      129    11.5     4
## 196  226    3.36     13    810.0  72.85   62      117    11.6     4
## 197  266    3.97     25   1164.0 102.30  102      201    10.1     2
## 198  286    2.90     38   1692.0 141.05   90      381     9.6     2
## 199  392    3.43     52   1395.0 184.45  194      328    10.2     3
## 200  236    3.55    112   1391.0 137.95  114      332     9.9     3
## 201  235    3.20     26   1758.0 106.95   67      228    10.8     4
## 202  223    3.80     15   1044.0  80.60   89      514    10.0     2
## 203  149    4.04    227    598.0  52.70   57      166     9.9     2
## 204  255    3.74     23   1024.0  77.50   58      281    10.2     3
## 205  382    3.55    108   1516.0 238.70   NA      126    10.3     3
## 206  213    4.07     12   5300.0  57.35   68      240    11.0     1
## 207   NA    3.33     14    733.0  85.25   NA      259    10.1     4
## 208  396    3.20     58   1440.0 153.45  131      156    10.0     4
## 209  252    4.01     11   1210.0  72.85   58      309     9.5     2
## 210  346    3.37     81   1098.0 122.45   90      298    10.0     2
## 211   NA    3.76     27   1282.0 100.75   NA      114    10.3     3
## 212  232    3.98     11   1074.0 100.75   99      223     9.9     3
## 213  400    3.40      9   1134.0  96.10   55      356    10.2     3
## 214  404    3.43     34   1866.0  79.05  224      236     9.9     3
## 215 1276    3.85    141   1204.0 203.05  157      216    10.7     3
## 216   NA    3.68     20    856.0  55.80   NA      146    10.4     3
## 217  608    3.31     65   1790.0 151.90  210      298    10.8     4
## 218   NA    3.89     29    897.0  66.65   NA      423    10.1     1
## 219  215    4.17     67    936.0 134.85   85      176     9.6     3
## 220  426    3.22     96   2716.0 210.80  113      228    10.6     2
## 221  360    3.65     72   3186.0  94.55  154      269     9.7     4
## 222  372    3.38    227   2310.0 167.40  135      240    12.4     3
## 223  448    2.43    123   1833.0 134.00  155      210    11.0     4
## 224  309    3.66     67   1214.0 158.10  101      309     9.7     3
## 225  274    3.66    108   1065.0  88.35  135      251    10.1     2
## 226  223    3.70     39    884.0  75.95  104      231     9.6     3
## 227  316    3.35    172   1601.0 179.80   63      394     9.7     2
## 228  215    3.35     41    645.0  93.00   74      165     9.6     3
## 229  191    3.05    200   1020.0 175.15  118      139    11.4     4
## 230  302    3.41     51    310.0  83.70   44       95    11.5     4
## 231  518    1.96    115   2250.0 203.05   90      190    10.7     4
## 232  267    3.02     47   1001.0 133.30   87      265    10.6     3
## 233  514    3.06    412   2622.0 105.40   87      284     9.8     4
## 234  578    3.35     78    976.0 116.25  177      322    11.2     2
## 235 1336    4.16     71   3510.0 209.25  111      338    11.9     3
## 236  253    3.79     67   1006.0 139.50  106      341     9.7     3
## 237  442    2.95    105    820.0  85.25  108      181    10.1     3
## 238  280    3.35     NA   1093.0 128.65   81      295     9.8     2
## 239  300    2.94    231   1794.0 130.20   99      319    11.2     4
## 240  232    3.72     24    369.0  51.15  139      326    10.1     3
## 241  316    3.62    308   1119.0 114.70  322      282     9.8     4
## 242  354    2.97     86   1553.0 196.85  152      277     9.9     3
## 243  468    2.81    139   2009.0 198.40  139      233    10.0     4
## 244  350    3.22    121   1268.0 272.80  231      270     9.6     3
## 245  273    3.65     48    794.0  52.70  214      305     9.6     3
## 246  387    3.77     63   1613.0 150.35   33      185    10.1     4
## 247 1712    2.83     89   3681.0 158.10  139      297    10.0     3
## 248  324    3.51     39   1237.0  66.65  146      371    10.0     3
## 249  242    3.20     35   1556.0 175.15   71      195    10.6     4
## 250  299    3.36     23   2769.0 220.10   85      303    10.9     4
## 251  227    3.61     40    676.0  83.00  120      249     9.9     2
## 252  246    3.35    116    924.0 113.15   90      317    10.0     4
## 253  243    3.03    380    983.0 158.10  154       97    11.2     4
## 254  227    3.75    121   1136.0 110.00   91      264    10.0     3
## 255  193    3.85     35    466.0  53.00  118      156    10.3     3
## 256  336    3.74     48    823.0  84.00  108      242     9.7     3
## 257  280    4.23     36    377.0  56.00  146      227    10.6     2
## 258  414    3.44     80   1003.0  99.00   55      271     9.6     1
## 259  277    2.97     42   1110.0 125.00  126      221     9.8     3
## 260  232    3.59    188   1120.0  98.00  128      248    10.9     4
## 261  375    3.14    129    857.0  89.00   NA      375     9.5     3
## 262  322    3.06     65   2562.0  91.00  209      231     9.5     3
## 263  432    3.57     45   1406.0 190.00   77      248    11.4     4
## 264  356    3.12    188   1911.0  92.00  130      318    11.2     3
## 265  348    3.20    121    938.0 120.00  146      296    10.0     4
## 266  318    3.32     52    613.0  70.00  260      279    10.2     3
## 267  222    2.33    138    620.0 106.00   91      195    12.1     4
## 268  344    2.75     16    834.0  82.00  179      149    11.0     4
## 269  374    3.50    143   1428.0 188.00   44      151    10.1     2
## 270  448    3.74    102   1128.0  71.00  117      228    10.2     3
## 271  321    3.50     94    955.0 111.00  177      289     9.7     3
## 272  226    2.93     22    674.0  58.00   85      153     9.8     1
## 273  328    3.46     75   1677.0  87.00  116      202     9.6     3
## 274   NA    3.07    136   1995.0 128.00   NA      372     9.6     4
## 275  572    3.77     77   2520.0  92.00  114      309     9.5     4
## 276  219    3.85     67    640.0 145.00  108       95    10.7     2
## 277  317    3.56     44   1636.0  84.00  111      394     9.8     3
## 278  338    3.70    130   2139.0 185.00  193      215     9.9     4
## 279  198    3.77     38    911.0  57.00   56      280     9.8     2
## 280  325    3.69     69   2583.0 142.00  140      284     9.6     3
## 281  175    2.10    220    705.0 338.00  229       62    12.9     4
## 282  304    3.52     97   1622.0  71.00  169      255     9.5     4
## 283  412    3.99    103   1293.0  91.00  113      422     9.6     4
## 284  291    3.44     75   1082.0  85.00  195      251     9.5     3
## 285  253    3.48     65    688.0  57.00   80      252    10.0     1
## 286  310    3.36     70   1257.0 122.00  118      143     9.8     3
## 287  373    3.46    155   1768.0 120.00  151      258    10.1     4
## 288  310    3.89    107    637.0 117.00  242      298     9.6     2
## 289  416    3.99    177    960.0  86.00  242      269     9.8     2
## 290  294    3.57     33    722.0  93.00   69      283     9.8     3
## 291  339    3.18    123   3336.0 205.00   84      304     9.9     4
## 292  546    3.73     84   1070.0 127.00  153      291    11.2     3
## 293  194    2.98    196    815.0 163.00   78      122    12.3     4
## 294 1000    3.07     88   3150.0 193.00  133      299    10.9     4
## 295  646    3.83    102    855.0 127.00  194      306    10.3     3
## 296  328    3.31     62   1105.0 137.00   95      293    10.9     4
## 297  275    3.43    100   1142.0  75.00   91      217    11.3     4
## 298  340    3.37     73    289.0  97.00   93      243    10.2     3
## 299  342    3.76     90   1653.0 150.00  127      213    10.8     3
## 300   NA    2.23    234    601.0 135.00   NA      206    12.3     4
## 301  393    3.57     50   1307.0  74.00  103      295    10.5     4
## 302  335    3.95     43    657.0  52.00  104      268    10.6     2
## 303  372    3.25    108   1190.0 140.00   55      248    10.6     4
## 304  219    3.93     22    663.0  45.00   75      246    10.8     3
## 305  426    3.61     73   5184.0 288.00  144      275    10.6     3
## 306  239    3.45     31   1072.0  55.00   64      227    10.7     2
## 307  273    3.56     52   1282.0 130.00   59      344    10.5     2
## 308  246    3.58     24    797.0  91.00  113      288    10.4     2
## 309  260    2.75     41   1166.0  70.00   82      231    10.8     2
## 310  434    3.35     39   1713.0 171.00  100      234    10.2     2
## 311  247    3.16     69   1050.0 117.00   88      335    10.5     2
## 312  576    3.79    186   2115.0 136.00  149      200    10.8     2
## 313   NA    3.65     NA       NA     NA   NA      378    11.0    NA
## 314   NA    3.04     NA       NA     NA   NA      331    12.1     4
## 315   NA    4.03     NA       NA     NA   NA      226     9.8     4
## 316   NA    3.96     NA       NA     NA   NA       NA    11.3     4
## 317   NA    2.48     NA       NA     NA   NA      273    10.0    NA
## 318   NA    3.68     NA       NA     NA   NA      306     9.5     2
## 319   NA    2.93     NA       NA     NA   NA      260    10.4    NA
## 320   NA    3.81     NA       NA     NA   NA      226    10.5     3
## 321   NA    3.41     NA       NA     NA   NA      259    10.9     4
## 322   NA    3.69     NA       NA     NA   NA      139    10.5    NA
## 323   NA    4.04     NA       NA     NA   NA      130    11.2     2
## 324   NA    3.94     NA       NA     NA   NA      234    11.5     2
## 325   NA    3.24     NA       NA     NA   NA       NA    18.0     2
## 326   NA    3.42     NA       NA     NA   NA      246    10.3     3
## 327   NA    3.99     NA       NA     NA   NA       NA    11.2     2
## 328   NA    3.60     NA       NA     NA   NA       NA    12.1     2
## 329   NA    3.40     NA       NA     NA   NA      371    10.1     4
## 330   NA    3.63     NA       NA     NA   NA      325    10.3     2
## 331   NA    3.56     NA       NA     NA   NA      142    13.6     4
## 332   NA    2.87     NA       NA     NA   NA      114    11.8     4
## 333   NA    3.92     NA       NA     NA   NA       NA    10.6     4
## 334   NA    3.51     NA       NA     NA   NA      721    11.8    NA
## 335   NA    4.15     NA       NA     NA   NA      280    10.1     2
## 336   NA    3.34     NA       NA     NA   NA      155    10.1     4
## 337   NA    3.64     NA       NA     NA   NA      141    10.0    NA
## 338   NA    3.42     NA       NA     NA   NA      475    13.8     2
## 339   NA    4.38     NA       NA     NA   NA      269    10.6     2
## 340   NA    4.19     NA       NA     NA   NA      141    11.2     2
## 341   NA    3.29     NA       NA     NA   NA      286    13.1     4
## 342   NA    4.01     NA       NA     NA   NA      244    10.5     3
## 343   NA    2.84     NA       NA     NA   NA       NA    12.2     2
## 344   NA    3.76     NA       NA     NA   NA      209    10.6     3
## 345   NA    3.76     NA       NA     NA   NA      388    10.1     2
## 346   NA    3.81     NA       NA     NA   NA      160    11.0     4
## 347   NA    3.92     NA       NA     NA   NA       NA     9.3     2
## 348   NA    3.14     NA       NA     NA   NA      191    12.3     2
## 349   NA    3.82     NA       NA     NA   NA      249    10.3     2
## 350   NA    4.10     NA       NA     NA   NA      200     9.0     3
## 351   NA    3.40     NA       NA     NA   NA      150    11.1     4
## 352   NA    4.19     NA       NA     NA   NA      330     9.9     1
## 353   NA    3.40     NA       NA     NA   NA      167    10.6     4
## 354   NA    3.12     NA       NA     NA   NA      125     9.6     2
## 355   NA    3.75     NA       NA     NA   NA      145    10.4     3
## 356   NA    3.26     NA       NA     NA   NA      171    11.1     4
## 357   NA    3.46     NA       NA     NA   NA      109    10.4     4
## 358   NA    3.49     NA       NA     NA   NA      314    10.3     3
## 359   NA    2.89     NA       NA     NA   NA      419      NA     1
## 360   NA    3.15     NA       NA     NA   NA      183    10.4     4
## 361   NA    2.31     NA       NA     NA   NA      517    10.4     4
## 362   NA    3.04     NA       NA     NA   NA      432     9.7     2
## 363   NA    3.50     NA       NA     NA   NA      150     9.9     3
## 364   NA    3.35     NA       NA     NA   NA      142    11.5     4
## 365   NA    3.58     NA       NA     NA   NA      224    10.0     3
## 366   NA    3.01     NA       NA     NA   NA      223    10.7     3
## 367   NA    3.49     NA       NA     NA   NA      166     9.8     3
## 368   NA    2.77     NA       NA     NA   NA      388      NA     4
## 369   NA    4.52     NA       NA     NA   NA      102    10.8     4
## 370   NA    3.36     NA       NA     NA   NA      384    10.0     3
## 371   NA    3.52     NA       NA     NA   NA      265    11.1     1
## 372   NA    3.55     NA       NA     NA   NA      248    10.3     2
## 373   NA    3.29     NA       NA     NA   NA      190     9.8     2
## 374   NA    3.10     NA       NA     NA   NA      274    10.6     3
## 375   NA    3.24     NA       NA     NA   NA      231    10.5     3
## 376   NA    3.63     NA       NA     NA   NA      292    10.2     3
## 377   NA    3.76     NA       NA     NA   NA      253     9.9     3
## 378   NA    3.62     NA       NA     NA   NA      225     9.9     2
## 379   NA    2.73     NA       NA     NA   NA      224    11.1     4
## 380   NA    4.08     NA       NA     NA   NA      418    10.5     3
## 381   NA    3.66     NA       NA     NA   NA       92    11.0     4
## 382   NA    2.58     NA       NA     NA   NA      190    11.6     4
## 383   NA    3.00     NA       NA     NA   NA       76    10.8     4
## 384   NA    3.40     NA       NA     NA   NA      243     9.7     1
## 385   NA    2.93     NA       NA     NA   NA      209    10.6     3
## 386   NA    2.38     NA       NA     NA   NA      166     9.8     3
## 387   NA    3.00     NA       NA     NA   NA      233     9.9     3
## 388   NA    3.50     NA       NA     NA   NA      117    10.9     4
## 389   NA    3.06     NA       NA     NA   NA      165    10.0     4
## 390   NA    3.15     NA       NA     NA   NA      139    10.0     3
## 391   NA    2.80     NA       NA     NA   NA      120    11.0     2
## 392   NA    3.03     NA       NA     NA   NA      173    10.9     3
## 393   NA    2.96     NA       NA     NA   NA      319     9.9     4
## 394   NA    3.07     NA       NA     NA   NA       80    12.1     4
## 395   NA    3.98     NA       NA     NA   NA      402    11.0     1
## 396   NA    3.48     NA       NA     NA   NA      277    10.2     2
## 397   NA    3.65     NA       NA     NA   NA      425    10.2     4
## 398   NA    3.49     NA       NA     NA   NA      189    10.9     4
## 399   NA    2.82     NA       NA     NA   NA      193    10.4     2
## 400   NA    3.34     NA       NA     NA   NA      258    10.6     2
## 401   NA    3.19     NA       NA     NA   NA      120    11.1     4
## 402   NA    3.01     NA       NA     NA   NA      256    10.6     3
## 403   NA    3.33     NA       NA     NA   NA      256    10.8     4
## 404   NA    3.60     NA       NA     NA   NA      337    10.4     3
## 405   NA    3.64     NA       NA     NA   NA      340    10.6     3
## 406   NA    2.68     NA       NA     NA   NA      219    11.5     4
## 407   NA    3.69     NA       NA     NA   NA      220    10.8     3
## 408   NA    3.17     NA       NA     NA   NA      162    10.7     3
## 409   NA    3.73     NA       NA     NA   NA      214    10.8     3
## 410   NA    3.81     NA       NA     NA   NA      255    10.8     3
## 411   NA    3.57     NA       NA     NA   NA      286    10.6     3
## 412   NA    3.58     NA       NA     NA   NA      244    10.8     3
## 413   NA    3.23     NA       NA     NA   NA      312    10.8     3
## 414   NA    2.96     NA       NA     NA   NA      174    10.9     3
## 415   NA    3.83     NA       NA     NA   NA      180    11.2     4
## 416   NA    3.42     NA       NA     NA   NA      143     9.9     3
## 417   NA    3.75     NA       NA     NA   NA      269    10.4     3
## 418   NA    3.29     NA       NA     NA   NA      350    10.6     4

Consider Trends vs Indicators

library(tidyverse)
pbc <- pbc %>%
      filter(!is.na(stage)) %>%
      mutate(stage_dummy = as.factor(stage)) %>%
      mutate(mean_cent_age= age-mean(age))

Regression plot with trend:


library(ggplot2)
ggplot(pbc, aes(mean_cent_age, platelet, color=stage)) + geom_smooth(method="lm", se=FALSE)

Regression plot with trend:


plot of chunk unnamed-chunk-16

Regression plot with Indicators:


library(ggplot2)
ggplot(pbc, aes(mean_cent_age, platelet, color=stage_dummy)) + geom_smooth(method="lm")

Regression plot with Indicators:


plot of chunk unnamed-chunk-18

Regressions: Trend


library(broom)
mod1 <- lm(data=pbc, platelet~mean_cent_age + stage)
tidy(mod1)
## # A tibble: 3 x 5
##   term          estimate std.error statistic  p.value
##   <chr>            <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)     333.      16.9       19.7  6.72e-61
## 2 mean_cent_age    -1.07     0.449     -2.38 1.78e- 2
## 3 stage           -25.4      5.35      -4.75 2.80e- 6

Interpretations


  • age: For 2 people with the same disease stage, a person 1 year older has an average platelet count of 1 less than the younger person.
  • stage: For 2 people of the same age, a person 1 disease stage higher has an average platelet count 25 less than the person with the lower disease stage.

Regressions: Trend


library(broom)
mod2 <- lm(data=pbc, platelet~age + stage_dummy)
tidy(mod2)
## # A tibble: 5 x 5
##   term         estimate std.error statistic  p.value
##   <chr>           <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)    340.      29.6     11.5    1.50e-26
## 2 age             -1.03     0.453   -2.28   2.33e- 2
## 3 stage_dummy2    -2.16    22.9     -0.0941 9.25e- 1
## 4 stage_dummy3   -26.8     21.9     -1.22   2.22e- 1
## 5 stage_dummy4   -60.1     22.2     -2.70   7.19e- 3

Interpretations


  • age: For 2 people with the same disease stage, a person 1 year older has an average platelet count of 1 less than the younger person.
  • stage_dummy 2: For 2 people of the same age, a person in diease stage 2 higher has an average platelet count 2 less than the person with disease stage 1.
  • stage_dummy 3: For 2 people of the same age, a person in diease stage 3 higher has an average platelet count 27 less than the person with disease stage 1.
  • stage_dummy 4: For 2 people of the same age, a person in diease stage 4 higher has an average platelet count 60 less than the person with disease stage 1.

Is there a difference?


  • Yes!!
  • If we look between diease stage 1 and 2 the difference is on average 2 in the model with dummy variables.
  • In the trend model the difference between any 2 stages is on average 25.

Is this difference Significant?


  • We can test for significane with the F-test
anova(mod1,mod2)
## Analysis of Variance Table
## 
## Model 1: platelet ~ mean_cent_age + stage
## Model 2: platelet ~ age + stage_dummy
##   Res.Df     RSS Df Sum of Sq      F Pr(>F)
## 1    398 3383405                           
## 2    396 3370016  2     13389 0.7866 0.4561
  • Based on our test, the trend gives us just as much information.

How about \(R^2\)


library(broom)
glance1 <- glance(mod1)[,c(1:2)]
glance2 <- glance(mod2)[,c(1:2)]
bind_rows(glance1, glance2)
## # A tibble: 2 x 2
##   r.squared adj.r.squared
##       <dbl>         <dbl>
## 1    0.0774        0.0728
## 2    0.0811        0.0718