Output

Logistic Model Output

# Model 1  - Hypertension = beta0 + beta1*age
summary(mod1)
## 
## Call:
## glm(formula = hyperten ~ age1, family = binomial, data = fhs)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.132  -1.319   0.659   0.846   1.136  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.79492    0.20645   -8.69   <2e-16 ***
## age1         0.05737    0.00424   13.52   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 5141.9  on 4433  degrees of freedom
## Residual deviance: 4945.2  on 4432  degrees of freedom
## AIC: 4949
## 
## Number of Fisher Scoring iterations: 4
#Model 2 - Hypertension = beta0 + beta1* (current smoker)
summary(mod2)
## 
## Call:
## glm(formula = hyperten ~ cursmoke1, family = binomial, data = fhs)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.752  -1.511   0.697   0.877   0.877  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    1.2908     0.0512   25.20  < 2e-16 ***
## cursmoke1Yes  -0.5330     0.0688   -7.75  9.4e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 5141.9  on 4433  degrees of freedom
## Residual deviance: 5081.1  on 4432  degrees of freedom
## AIC: 5085
## 
## Number of Fisher Scoring iterations: 4
#Model 3 - Hypertension = beta0 + beta1*(cigs per day)
summary(mod3)
## 
## Call:
## glm(formula = hyperten ~ cigpday1, family = binomial, data = fhs)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.688  -1.493   0.742   0.790   1.119  
## 
## Coefficients:
##             Estimate Std. Error z value   Pr(>|z|)    
## (Intercept)  1.15003    0.04370   26.32    < 2e-16 ***
## cigpday1    -0.01445    0.00275   -5.25 0.00000016 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 5101.8  on 4401  degrees of freedom
## Residual deviance: 5074.8  on 4400  degrees of freedom
##   (32 observations deleted due to missingness)
## AIC: 5079
## 
## Number of Fisher Scoring iterations: 4
#Model 4 - Hyptertension = beta0 + beta1*(bmi)
summary(mod4)
## 
## Call:
## glm(formula = hyperten ~ bmi1, family = binomial, data = fhs)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.645  -1.225   0.655   0.824   1.415  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -3.0307     0.2591   -11.7   <2e-16 ***
## bmi1          0.1601     0.0104    15.4   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 5118.0  on 4414  degrees of freedom
## Residual deviance: 4837.1  on 4413  degrees of freedom
##   (19 observations deleted due to missingness)
## AIC: 4841
## 
## Number of Fisher Scoring iterations: 4
#Model 5 - Hypertension = beta0 + beta1*(diabetes)
summary(mod5)
## 
## Call:
## glm(formula = hyperten ~ diabetes1, family = binomial, data = fhs)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.871  -1.620   0.792   0.792   0.792  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    0.9988     0.0343   29.09   <2e-16 ***
## diabetes1Yes   0.5619     0.2425    2.32     0.02 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 5141.9  on 4433  degrees of freedom
## Residual deviance: 5135.9  on 4432  degrees of freedom
## AIC: 5140
## 
## Number of Fisher Scoring iterations: 4
#model 6 - Hypertension = beta0 + beta1*(Blood Pressure Meds)
summary(mod6)
## 
## Call:
## glm(formula = hyperten ~ bpmeds1, family = binomial, data = fhs)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.602  -1.602   0.806   0.806   0.806  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.9587     0.0344   27.91   <2e-16 ***
## bpmeds1Yes   15.6073   199.9621    0.08     0.94    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 5083.8  on 4372  degrees of freedom
## Residual deviance: 4992.1  on 4371  degrees of freedom
##   (61 observations deleted due to missingness)
## AIC: 4996
## 
## Number of Fisher Scoring iterations: 15
#Model 7 - Hypertension = beta0 + beta1*(Heart Rate)
summary(mod7)
## 
## Call:
## glm(formula = hyperten ~ heartrte1, family = binomial, data = fhs)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.179  -1.498   0.758   0.815   1.002  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -0.39215    0.22238   -1.76    0.078 .  
## heartrte1    0.01866    0.00295    6.33  2.4e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 5141.3  on 4432  degrees of freedom
## Residual deviance: 5099.6  on 4431  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 5104
## 
## Number of Fisher Scoring iterations: 4
#Model 8 - Hypertension = beta0 + beta1*(Heart Attacks)
summary(mod8)
## 
## Call:
## glm(formula = hyperten ~ prevmi1, family = binomial, data = fhs)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
##  -1.80   -1.62    0.79    0.79    0.79  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   1.0051     0.0342   29.35   <2e-16 ***
## prevmi1Yes    0.3958     0.2729    1.45     0.15    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 5141.9  on 4433  degrees of freedom
## Residual deviance: 5139.6  on 4432  degrees of freedom
## AIC: 5144
## 
## Number of Fisher Scoring iterations: 4
#Model 9 - Hypertension = beta0 + beta1*(Systolic Blood Pressure)
summary(mod9)
## 
## Call:
## glm(formula = hyperten ~ sysbp1, family = binomial, data = fhs)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -3.184  -0.677   0.325   0.710   2.381  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -10.79750    0.42166   -25.6   <2e-16 ***
## sysbp1        0.09440    0.00347    27.2   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 5141.9  on 4433  degrees of freedom
## Residual deviance: 3781.4  on 4432  degrees of freedom
## AIC: 3785
## 
## Number of Fisher Scoring iterations: 6
# Model 10 - Hypertension = beta0 + beta1*(age) + beta2*(current smoker) + beta3*(cigs per day) 
#+ beta4*(bmi) + beta5*(diabetes) + beta6*(blood pressure meds)  + beta7*(Heart Rate)
#+ beta8*(Heart Attacks)   + beta9*(Systolic Blood Pressure)
summary(mod10)
## 
## Call:
## glm(formula = hyperten ~ age1 + cursmoke1 + cigpday1 + bmi1 + 
##     diabetes1 + bpmeds1 + heartrte1 + prevmi1 + sysbp1, family = binomial, 
##     data = fhs1)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -3.163  -0.628   0.299   0.699   2.430  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -12.18403    0.57543  -21.17  < 2e-16 ***
## age1           0.00367    0.00525    0.70     0.48    
## cursmoke1Yes  -0.16833    0.12844   -1.31     0.19    
## cigpday1      -0.00313    0.00523   -0.60     0.55    
## bmi1           0.07023    0.01238    5.67  1.4e-08 ***
## diabetes1Yes  -0.23052    0.31401   -0.73     0.46    
## bpmeds1Yes    14.44913  259.60396    0.06     0.96    
## heartrte1      0.00228    0.00364    0.63     0.53    
## prevmi1Yes     0.17968    0.33732    0.53     0.59    
## sysbp1         0.08938    0.00373   23.94  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 5019.8  on 4321  degrees of freedom
## Residual deviance: 3606.3  on 4312  degrees of freedom
## AIC: 3626
## 
## Number of Fisher Scoring iterations: 16
# Model 11 - Hypertension = beta0 + beta1*(age) + beta2*(current smoker)  + beta3*(bmi) 
#+ beta4*(blood pressure meds) + beta5*(Heart Rate)  + beta6*(Heart Attacks)
#+ beta7*(Systolic Blood Pressure)
summary(mod11)
## 
## Call:
## glm(formula = hyperten ~ age1 + cursmoke1 + bmi1 + bpmeds1 + 
##     heartrte1 + prevmi1 + sysbp1, family = binomial, data = fhs1)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -3.158  -0.629   0.300   0.699   2.427  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -12.12817    0.57191  -21.21  < 2e-16 ***
## age1           0.00339    0.00522    0.65   0.5161    
## cursmoke1Yes  -0.22608    0.08470   -2.67   0.0076 ** 
## bmi1           0.06956    0.01235    5.63  1.8e-08 ***
## bpmeds1Yes    14.46643  259.13961    0.06   0.9555    
## heartrte1      0.00207    0.00363    0.57   0.5679    
## prevmi1Yes     0.16716    0.33718    0.50   0.6201    
## sysbp1         0.08927    0.00373   23.95  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 5019.8  on 4321  degrees of freedom
## Residual deviance: 3607.2  on 4314  degrees of freedom
## AIC: 3623
## 
## Number of Fisher Scoring iterations: 16
# Model 12 - Hypertension = beta0 + beta1*(current smoker) + beta2*(bmi) +beta3*(blood pressure meds) 
summary(mod12)
## 
## Call:
## glm(formula = hyperten ~ cursmoke1 + bmi1 + bpmeds1, family = binomial, 
##     data = fhs1)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.633  -1.187   0.651   0.834   1.435  
## 
## Coefficients:
##              Estimate Std. Error z value  Pr(>|z|)    
## (Intercept)   -2.6351     0.2737   -9.63   < 2e-16 ***
## cursmoke1Yes  -0.3404     0.0725   -4.70 0.0000027 ***
## bmi1           0.1496     0.0106   14.07   < 2e-16 ***
## bpmeds1Yes    15.2868   189.9070    0.08      0.94    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 5019.8  on 4321  degrees of freedom
## Residual deviance: 4648.0  on 4318  degrees of freedom
## AIC: 4656
## 
## Number of Fisher Scoring iterations: 15
# Model 13 - Hypertension = beta0 + beta1*(current smoker) + beta2*(bmi) +beta3*(blood pressure meds) 
#+ beta4*(Systolic Blood Pressure)
summary(mod13)
## 
## Call:
## glm(formula = hyperten ~ cursmoke1 + bmi1 + bpmeds1 + sysbp1, 
##     family = binomial, data = fhs1)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -3.162  -0.633   0.302   0.698   2.437  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -11.91027    0.50294  -23.68  < 2e-16 ***
## cursmoke1Yes  -0.23012    0.08334   -2.76   0.0058 ** 
## bmi1           0.06989    0.01234    5.66  1.5e-08 ***
## bpmeds1Yes    14.51555  258.93028    0.06   0.9553    
## sysbp1         0.09006    0.00362   24.90  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 5019.8  on 4321  degrees of freedom
## Residual deviance: 3608.2  on 4317  degrees of freedom
## AIC: 3618
## 
## Number of Fisher Scoring iterations: 16

#LRT: Model 10 vs Model 11
anova(mod10, mod11, test ="Chisq" )
## Analysis of Deviance Table
## 
## Model 1: hyperten ~ age1 + cursmoke1 + cigpday1 + bmi1 + diabetes1 + bpmeds1 + 
##     heartrte1 + prevmi1 + sysbp1
## Model 2: hyperten ~ age1 + cursmoke1 + bmi1 + bpmeds1 + heartrte1 + prevmi1 + 
##     sysbp1
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1      4312       3606                     
## 2      4314       3607 -2   -0.891     0.64
#LRT: Model 10 vs Model 12
anova(mod10, mod12, test ="Chisq")
## Analysis of Deviance Table
## 
## Model 1: hyperten ~ age1 + cursmoke1 + cigpday1 + bmi1 + diabetes1 + bpmeds1 + 
##     heartrte1 + prevmi1 + sysbp1
## Model 2: hyperten ~ cursmoke1 + bmi1 + bpmeds1
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)    
## 1      4312       3606                         
## 2      4318       4648 -6    -1042   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#LRT: Model 10 vs Model 13
anova(mod10, mod13, test ="Chisq")
## Analysis of Deviance Table
## 
## Model 1: hyperten ~ age1 + cursmoke1 + cigpday1 + bmi1 + diabetes1 + bpmeds1 + 
##     heartrte1 + prevmi1 + sysbp1
## Model 2: hyperten ~ cursmoke1 + bmi1 + bpmeds1 + sysbp1
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1      4312       3606                     
## 2      4317       3608 -5    -1.91     0.86
#LRT: Model 11 vs Model 12
anova(mod11, mod12, test ="Chisq")
## Analysis of Deviance Table
## 
## Model 1: hyperten ~ age1 + cursmoke1 + bmi1 + bpmeds1 + heartrte1 + prevmi1 + 
##     sysbp1
## Model 2: hyperten ~ cursmoke1 + bmi1 + bpmeds1
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)    
## 1      4314       3607                         
## 2      4318       4648 -4    -1041   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#LRT: Model 11 vs Model 13
anova(mod11, mod13, test ="Chisq")
## Analysis of Deviance Table
## 
## Model 1: hyperten ~ age1 + cursmoke1 + bmi1 + bpmeds1 + heartrte1 + prevmi1 + 
##     sysbp1
## Model 2: hyperten ~ cursmoke1 + bmi1 + bpmeds1 + sysbp1
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1      4314       3607                     
## 2      4317       3608 -3    -1.01      0.8
#LRT: Model 12 vs Model 13
anova(mod12, mod13, test ="Chisq")
## Analysis of Deviance Table
## 
## Model 1: hyperten ~ cursmoke1 + bmi1 + bpmeds1
## Model 2: hyperten ~ cursmoke1 + bmi1 + bpmeds1 + sysbp1
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)    
## 1      4318       4648                         
## 2      4317       3608  1     1040   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Surival Model Output

#Cox PH
# Model 14 - Hypertension = beta0 + beta1*(age) + beta2*(current smoker) + beta3*(cigs per day) + 
#beta4*(bmi) + beta5*(diabetes) + beta6*(blood pressure meds)
# + beta7*(Heart Rate) + beta8*(Heart Attacks) + beta9*(Systolic Blood Pressure)
summary(mod14)
## Call:
## coxph(formula = surv ~ age1 + cursmoke1 + cigpday1 + bmi1 + diabetes1 + 
##     bpmeds1 + heartrte1 + prevmi1 + sysbp1, data = fhs1)
## 
##   n= 4322, number of events= 3166 
## 
##                   coef exp(coef)  se(coef)     z Pr(>|z|)    
## age1          0.018517  1.018690  0.002342  7.91  2.7e-15 ***
## cursmoke1Yes -0.107032  0.898496  0.058835 -1.82  0.06888 .  
## cigpday1      0.002619  1.002623  0.002453  1.07  0.28556    
## bmi1          0.030797  1.031276  0.004347  7.09  1.4e-12 ***
## diabetes1Yes -0.064980  0.937086  0.106353 -0.61  0.54121    
## bpmeds1Yes    0.311533  1.365517  0.092478  3.37  0.00076 ***
## heartrte1     0.003861  1.003869  0.001494  2.58  0.00977 ** 
## prevmi1Yes    0.271029  1.311313  0.124473  2.18  0.02945 *  
## sysbp1        0.033332  1.033894  0.000745 44.72  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## age1             1.019      0.982     1.014      1.02
## cursmoke1Yes     0.898      1.113     0.801      1.01
## cigpday1         1.003      0.997     0.998      1.01
## bmi1             1.031      0.970     1.023      1.04
## diabetes1Yes     0.937      1.067     0.761      1.15
## bpmeds1Yes       1.366      0.732     1.139      1.64
## heartrte1        1.004      0.996     1.001      1.01
## prevmi1Yes       1.311      0.763     1.027      1.67
## sysbp1           1.034      0.967     1.032      1.04
## 
## Concordance= 0.837  (se = 0.007 )
## Rsquare= 0.45   (max possible= 1 )
## Likelihood ratio test= 2580  on 9 df,   p=0
## Wald test            = 4100  on 9 df,   p=0
## Score (logrank) test = 3894  on 9 df,   p=0
cox.zph(mod14)
##                   rho   chisq         p
## age1         -0.02692  2.3435 0.1258101
## cursmoke1Yes -0.00946  0.3002 0.5837457
## cigpday1     -0.00211  0.0151 0.9021304
## bmi1          0.00208  0.0133 0.9080208
## diabetes1Yes  0.01234  0.4952 0.4816144
## bpmeds1Yes   -0.01861  1.1797 0.2774146
## heartrte1    -0.02419  1.8892 0.1692968
## prevmi1Yes    0.00483  0.0743 0.7851462
## sysbp1        0.09875 18.3681 0.0000182
## GLOBAL             NA 24.8477 0.0031444
#Cox PH
# Model 14a - Hypertension = beta0 + beta1*(age) + beta2*(current smoker) + beta3*(cigs per day)
# + beta4*(bmi)  + beta5*(diabetes) + beta6*(blood pressure meds) 
# + beta7*(Heart Rate) + beta8*(Heart Attacks)  
#adjusted for systolic blood pressure with strata command
summary(mod14a)
## Call:
## coxph(formula = surv ~ age1 + cursmoke1 + cigpday1 + bmi1 + diabetes1 + 
##     bpmeds1 + heartrte1 + prevmi1 + strata(sysbp1), data = fhs1)
## 
##   n= 4322, number of events= 3166 
## 
##                  coef exp(coef) se(coef)     z Pr(>|z|)    
## age1          0.01219   1.01227  0.00246  4.96  7.1e-07 ***
## cursmoke1Yes -0.07091   0.93155  0.06086 -1.17    0.244    
## cigpday1      0.00205   1.00205  0.00252  0.81    0.416    
## bmi1          0.03175   1.03226  0.00482  6.59  4.4e-11 ***
## diabetes1Yes -0.05612   0.94543  0.11551 -0.49    0.627    
## bpmeds1Yes    0.45949   1.58327  0.10230  4.49  7.1e-06 ***
## heartrte1     0.00308   1.00309  0.00154  2.00    0.046 *  
## prevmi1Yes    0.27539   1.31704  0.13346  2.06    0.039 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## age1             1.012      0.988     1.007      1.02
## cursmoke1Yes     0.932      1.073     0.827      1.05
## cigpday1         1.002      0.998     0.997      1.01
## bmi1             1.032      0.969     1.023      1.04
## diabetes1Yes     0.945      1.058     0.754      1.19
## bpmeds1Yes       1.583      0.632     1.296      1.93
## heartrte1        1.003      0.997     1.000      1.01
## prevmi1Yes       1.317      0.759     1.014      1.71
## 
## Concordance= 0.588  (se = 0.067 )
## Rsquare= 0.023   (max possible= 0.984 )
## Likelihood ratio test= 101  on 8 df,   p=0
## Wald test            = 104  on 8 df,   p=0
## Score (logrank) test = 105  on 8 df,   p=0
cox.zph(mod14a)
##                    rho    chisq     p
## age1          0.026134 2.209447 0.137
## cursmoke1Yes -0.017457 0.991127 0.319
## cigpday1      0.009247 0.281423 0.596
## bmi1          0.008034 0.212408 0.645
## diabetes1Yes  0.008147 0.217254 0.641
## bpmeds1Yes   -0.001569 0.008803 0.925
## heartrte1    -0.017276 0.926928 0.336
## prevmi1Yes   -0.000434 0.000631 0.980
## GLOBAL              NA 5.928764 0.655
#Cox PH
# Model 15 - Hypertension = beta0 + beta1*(age) + beta2*(current smoker)  + beta3*(bmi) 
#+ beta4*(blood pressure meds)  + beta5*(Heart Rate)  + beta6*(Heart Attacks)
#+ beta7*(Systolic Blood Pressure)
summary(mod15)
## Call:
## coxph(formula = surv ~ age1 + cursmoke1 + bmi1 + bpmeds1 + heartrte1 + 
##     prevmi1 + sysbp1, data = fhs1)
## 
##   n= 4322, number of events= 3166 
## 
##                   coef exp(coef)  se(coef)     z Pr(>|z|)    
## age1          0.018322  1.018491  0.002335  7.85  4.2e-15 ***
## cursmoke1Yes -0.059501  0.942235  0.037297 -1.60   0.1106    
## bmi1          0.030797  1.031276  0.004308  7.15  8.7e-13 ***
## bpmeds1Yes    0.306502  1.358665  0.092285  3.32   0.0009 ***
## heartrte1     0.003862  1.003869  0.001492  2.59   0.0096 ** 
## prevmi1Yes    0.270696  1.310877  0.124296  2.18   0.0294 *  
## sysbp1        0.033328  1.033890  0.000746 44.69  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## age1             1.018      0.982     1.014      1.02
## cursmoke1Yes     0.942      1.061     0.876      1.01
## bmi1             1.031      0.970     1.023      1.04
## bpmeds1Yes       1.359      0.736     1.134      1.63
## heartrte1        1.004      0.996     1.001      1.01
## prevmi1Yes       1.311      0.763     1.027      1.67
## sysbp1           1.034      0.967     1.032      1.04
## 
## Concordance= 0.837  (se = 0.007 )
## Rsquare= 0.449   (max possible= 1 )
## Likelihood ratio test= 2579  on 7 df,   p=0
## Wald test            = 4095  on 7 df,   p=0
## Score (logrank) test = 3893  on 7 df,   p=0
cox.zph(mod15)
##                   rho   chisq         p
## age1         -0.02574  2.1482 0.1427392
## cursmoke1Yes -0.01752  0.9900 0.3197368
## bmi1          0.00433  0.0569 0.8114995
## bpmeds1Yes   -0.01796  1.0918 0.2960642
## heartrte1    -0.02383  1.8322 0.1758669
## prevmi1Yes    0.00591  0.1107 0.7393790
## sysbp1        0.09854 18.2791 0.0000191
## GLOBAL             NA 24.5346 0.0009172
#Cox PH
# Model 15a - Hypertension = beta0 + beta1*(age) + beta2*(current smoker)  + beta3*(bmi) 
#+ beta4*(blood pressure meds)  + beta5*(Heart Rate)  + beta6*(Heart Attacks)
#    adjust for Systolic Blood Pressure with strata command
summary(mod15a)
## Call:
## coxph(formula = surv ~ age1 + cursmoke1 + bmi1 + bpmeds1 + heartrte1 + 
##     prevmi1 + strata(sysbp1), data = fhs1)
## 
##   n= 4322, number of events= 3166 
## 
##                  coef exp(coef) se(coef)     z Pr(>|z|)    
## age1          0.01202   1.01209  0.00245  4.90  9.5e-07 ***
## cursmoke1Yes -0.03298   0.96756  0.03894 -0.85    0.397    
## bmi1          0.03184   1.03235  0.00480  6.63  3.4e-11 ***
## bpmeds1Yes    0.45552   1.57700  0.10221  4.46  8.3e-06 ***
## heartrte1     0.00311   1.00311  0.00154  2.01    0.044 *  
## prevmi1Yes    0.27761   1.31998  0.13333  2.08    0.037 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## age1             1.012      0.988     1.007      1.02
## cursmoke1Yes     0.968      1.034     0.896      1.04
## bmi1             1.032      0.969     1.023      1.04
## bpmeds1Yes       1.577      0.634     1.291      1.93
## heartrte1        1.003      0.997     1.000      1.01
## prevmi1Yes       1.320      0.758     1.016      1.71
## 
## Concordance= 0.588  (se = 0.067 )
## Rsquare= 0.023   (max possible= 0.984 )
## Likelihood ratio test= 99.8  on 6 df,   p=0
## Wald test            = 103  on 6 df,   p=0
## Score (logrank) test = 104  on 6 df,   p=0
cox.zph(mod15a)
##                    rho    chisq     p
## age1          0.026335 2.247966 0.134
## cursmoke1Yes -0.016820 0.903549 0.342
## bmi1          0.009807 0.316598 0.574
## bpmeds1Yes   -0.001644 0.009654 0.922
## heartrte1    -0.017037 0.902440 0.342
## prevmi1Yes    0.000341 0.000389 0.984
## GLOBAL              NA 5.668180 0.461
#Cox PH
# Model 16 - Hypertension = beta0 + beta1*(current smoker) + beta2*(bmi) +beta3*(blood pressure meds) 
summary(mod16)
## Call:
## coxph(formula = surv ~ cursmoke1 + bmi1 + bpmeds1, data = fhs1)
## 
##   n= 4322, number of events= 3166 
## 
##                  coef exp(coef) se(coef)     z  Pr(>|z|)    
## cursmoke1Yes -0.17601   0.83861  0.03630 -4.85 0.0000012 ***
## bmi1          0.08813   1.09213  0.00421 20.93   < 2e-16 ***
## bpmeds1Yes    1.52215   4.58207  0.09121 16.69   < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## cursmoke1Yes     0.839      1.192     0.781      0.90
## bmi1             1.092      0.916     1.083      1.10
## bpmeds1Yes       4.582      0.218     3.832      5.48
## 
## Concordance= 0.657  (se = 0.007 )
## Rsquare= 0.153   (max possible= 1 )
## Likelihood ratio test= 716  on 3 df,   p=0
## Wald test            = 953  on 3 df,   p=0
## Score (logrank) test = 1045  on 3 df,   p=0
cox.zph(mod16)
##                   rho chisq       p
## cursmoke1Yes  0.01137 0.411 0.52146
## bmi1         -0.04792 6.736 0.00945
## bpmeds1Yes    0.00875 0.262 0.60867
## GLOBAL             NA 7.855 0.04911
#Cox PH
# Model 16a - Hypertension = beta0 + beta1*(current smoker)  +beta2*(blood pressure meds) 
# Adjusted for BMI with strata command
summary(mod16a)
## Call:
## coxph(formula = surv ~ cursmoke1 + strata(bmi1) + bpmeds1, data = fhs1)
## 
##   n= 4322, number of events= 3166 
## 
##                coef exp(coef) se(coef)     z Pr(>|z|)    
## cursmoke1Yes -0.180     0.835    0.049 -3.68  0.00024 ***
## bpmeds1Yes    1.479     4.388    0.136 10.85  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## cursmoke1Yes     0.835      1.197     0.759     0.919
## bpmeds1Yes       4.388      0.228     3.359     5.731
## 
## Concordance= 0.548  (se = 0.16 )
## Rsquare= 0.028   (max possible= 0.779 )
## Likelihood ratio test= 125  on 2 df,   p=0
## Wald test            = 134  on 2 df,   p=0
## Score (logrank) test = 150  on 2 df,   p=0
cox.zph(mod16a)
##                   rho   chisq     p
## cursmoke1Yes 0.020046 1.30144 0.254
## bpmeds1Yes   0.000674 0.00147 0.969
## GLOBAL             NA 1.30144 0.522
#Cox PH
# Model 17 - Hypertension = beta0 + beta1*(current smoker) + beta2*(bmi) +beta3*(blood pressure meds)
#+ beta4*(Systolic Blood Pressure)
summary(mod17)
## Call:
## coxph(formula = surv ~ cursmoke1 + bmi1 + bpmeds1 + sysbp1, data = fhs1)
## 
##   n= 4322, number of events= 3166 
## 
##                   coef exp(coef)  se(coef)     z Pr(>|z|)    
## cursmoke1Yes -0.098614  0.906093  0.036634 -2.69  0.00711 ** 
## bmi1          0.030801  1.031281  0.004305  7.16  8.3e-13 ***
## bpmeds1Yes    0.333974  1.396506  0.092231  3.62  0.00029 ***
## sysbp1        0.035497  1.036134  0.000686 51.71  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## cursmoke1Yes     0.906      1.104     0.843     0.974
## bmi1             1.031      0.970     1.023     1.040
## bpmeds1Yes       1.397      0.716     1.166     1.673
## sysbp1           1.036      0.965     1.035     1.038
## 
## Concordance= 0.839  (se = 0.007 )
## Rsquare= 0.44   (max possible= 1 )
## Likelihood ratio test= 2506  on 4 df,   p=0
## Wald test            = 4163  on 4 df,   p=0
## Score (logrank) test = 3856  on 4 df,   p=0
cox.zph(mod17)
##                   rho   chisq         p
## cursmoke1Yes -0.01578  0.8066 0.3691270
## bmi1          0.00472  0.0676 0.7948323
## bpmeds1Yes   -0.01960  1.3009 0.2540498
## sysbp1        0.09505 15.8808 0.0000675
## GLOBAL             NA 22.8326 0.0001368
#Cox PH
# Model 17a - Hypertension = beta0 + beta1*(current smoker) + beta2*(bmi) +beta3*(blood pressure meds)
# ajdustled for Systolic Blood Pressure with the strata command
summary(mod17a)
## Call:
## coxph(formula = surv ~ cursmoke1 + bmi1 + bpmeds1 + strata(sysbp1), 
##     data = fhs1)
## 
##   n= 4322, number of events= 3166 
## 
##                  coef exp(coef) se(coef)     z Pr(>|z|)    
## cursmoke1Yes -0.05818   0.94348  0.03815 -1.52     0.13    
## bmi1          0.03102   1.03151  0.00479  6.48  9.4e-11 ***
## bpmeds1Yes    0.47753   1.61209  0.10211  4.68  2.9e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## cursmoke1Yes     0.943      1.060     0.876      1.02
## bmi1             1.032      0.969     1.022      1.04
## bpmeds1Yes       1.612      0.620     1.320      1.97
## 
## Concordance= 0.577  (se = 0.067 )
## Rsquare= 0.016   (max possible= 0.984 )
## Likelihood ratio test= 67.9  on 3 df,   p=1.19e-14
## Wald test            = 70.8  on 3 df,   p=3e-15
## Score (logrank) test = 71.3  on 3 df,   p=2.22e-15
cox.zph(mod17a)
##                    rho    chisq     p
## cursmoke1Yes -0.023375 1.749182 0.186
## bmi1          0.010831 0.385698 0.535
## bpmeds1Yes   -0.000255 0.000233 0.988
## GLOBAL              NA 2.399631 0.494
#LRT: Model 14 vs Model 15
anova(mod14a, mod15a)
## Analysis of Deviance Table
##  Cox model: response is  surv
##  Model 1: ~ age1 + cursmoke1 + cigpday1 + bmi1 + diabetes1 + bpmeds1 + heartrte1 + prevmi1 + strata(sysbp1)
##  Model 2: ~ age1 + cursmoke1 + bmi1 + bpmeds1 + heartrte1 + prevmi1 + strata(sysbp1)
##   loglik Chisq Df P(>|Chi|)
## 1  -8830                   
## 2  -8830   0.9  2      0.64
#LRT: Model 14 vs Model 16
anova(mod14a, mod16a)
## Analysis of Deviance Table
##  Cox model: response is  surv
##  Model 1: ~ age1 + cursmoke1 + cigpday1 + bmi1 + diabetes1 + bpmeds1 + heartrte1 + prevmi1 + strata(sysbp1)
##  Model 2: ~ cursmoke1 + strata(bmi1) + bpmeds1
##   loglik Chisq Df P(>|Chi|)    
## 1  -8830                       
## 2  -3199 11261  6    <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#LRT: Model 14 vs Model 17
anova(mod14a, mod17a)
## Analysis of Deviance Table
##  Cox model: response is  surv
##  Model 1: ~ age1 + cursmoke1 + cigpday1 + bmi1 + diabetes1 + bpmeds1 + heartrte1 + prevmi1 + strata(sysbp1)
##  Model 2: ~ cursmoke1 + bmi1 + bpmeds1 + strata(sysbp1)
##   loglik Chisq Df P(>|Chi|)    
## 1  -8830                       
## 2  -8846  32.7  5 0.0000043 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#LRT: Model 15 vs Model 16
anova(mod15a, mod16a)
## Analysis of Deviance Table
##  Cox model: response is  surv
##  Model 1: ~ age1 + cursmoke1 + bmi1 + bpmeds1 + heartrte1 + prevmi1 + strata(sysbp1)
##  Model 2: ~ cursmoke1 + strata(bmi1) + bpmeds1
##   loglik Chisq Df P(>|Chi|)    
## 1  -8830                       
## 2  -3199 11262  4    <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#LRT: Model 15 vs Model 17
anova(mod15a, mod17a)
## Analysis of Deviance Table
##  Cox model: response is  surv
##  Model 1: ~ age1 + cursmoke1 + bmi1 + bpmeds1 + heartrte1 + prevmi1 + strata(sysbp1)
##  Model 2: ~ cursmoke1 + bmi1 + bpmeds1 + strata(sysbp1)
##   loglik Chisq Df  P(>|Chi|)    
## 1  -8830                        
## 2  -8846  31.8  3 0.00000057 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#LRT: Model 16 vs Model 17
anova(mod16a, mod17a)
## Analysis of Deviance Table
##  Cox model: response is  surv
##  Model 1: ~ cursmoke1 + strata(bmi1) + bpmeds1
##  Model 2: ~ cursmoke1 + bmi1 + bpmeds1 + strata(sysbp1)
##   loglik Chisq Df P(>|Chi|)    
## 1  -3199                       
## 2  -8846 11294  1    <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1